
MARKOV CHAINS: BASIC THEORY

1. MARKOV CHAINS AND THEIR TRANSITION PROBABILITIES

1.1. Definition and First Examples.

Definition 1. A (discrete-time) Markov chain with (finite or countable) state space X is a se-
quence X0, X1, . . . of X−valued random variables such that for all states i , j , k0, k1, · · · and all
times n = 0, 1, 2, . . . ,

(1) P(Xn+1 = j ‖ Xn = i , Xn−1 = kn−1, . . . ) = p (i , j )

where p (i , j )depends only on the states i , j , and not on the time n or the previous states kn−1, n −2, . . . .
The numbers p (i , j ) are called the transition probabilities of the chain.

Example 1. The simple random walk on the integer lattice Zd is the Markov chain whose tran-
sition probabilities are

p (x ,x ± e i ) = 1/(2d ) ∀x ∈Zd

where e1,e2,...ed are the standard unit vectors in Zd . In other terms, the simple random walk
moves, at each step, to a randomly chosen nearest neighbor.

Example 2. The random transposition Markov chain on the permutation groupSN (the set of all
permutations of N cards) is a Markov chain whose transition probabilities are

p (x ,σx ) = 1/

�

N

2

�

for all transpositionsσ;

p (x , y ) = 0 otherwise.

A transposition is a permutation that exchanges two cards. Notice that there are exactly
�N

2

�

transpositions. Thus, the Markov chain proceeds by the following rule: at each step, choose two
different cards at random and switch them.

Example 3. The Ehrenfest urn model with N balls is the Markov chain on the state space X =
{0, 1}N that evolves as follows: At each time n = 1, 2, . . . a random index j ∈ [N ] is chosen, and the
j th coordinate of the last state is flipped. Thus, the transition probabilities are

p (x , y ) = 1/N if the vectors x , y differ in exactly 1 coordinate

= 0 otherwise.

The Ehrenfest model is a simple model of particle diffusion: Imagine a room with two compart-
ments 0 and 1, and N molecules distributed throughout the two compartments (customarily
called urns). At each time, one of the molecules is chosen at random and moved from its current
compartment to the other.

Example 4. Let ξ1,ξ2, . . . be independent, identically distributed, positive integer-valued ran-
dom variables with common distribution {qm }m≥1. Think of these as being the lifetimes of a
sequence of AAA batteries that I use in my wireless keyboard. Whenever a battery fails, I imme-
diately replace it by a new one. Consequently, the partial sums Sn :=

∑n
j=1ξj are the times at

1
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which batteries are replaced. In this context, the sequence of random variables {Sn}n≥0 is called
a renewal process.

There are several interesting Markov chains associated with a renewal process: (A) The age
process A1, A2, . . . is the sequence of random variables that record the time elapsed since the last
battery failure, in other words, An is the age of the battery in use at time n . At each step, the age
process either increases by+1, or it jumps to 0. It is not difficult to verify that it is a Markov chain
with transition probabilities

p (m , m +1) =
∞
∑

j=m+1

qj /
∞
∑

j=m

qj ,

p (m , 0) =qm /
∞
∑

j=m

qj .

(B) The residual lifetime process R1, R2, . . . is the sequence of random variables that record the
time until the next battery failure, that is, the remaining lifetime of the battery currently in use.
(If a new battery is installed at time n , the residual lifetime is the lifetime of the new battery, not
0.) The sequence Rn is a Markov chain with transition probabilities

p (m , m −1) = 1 if m ≥ 2;

p (1, m ) =qm for all m ≥ 1.

Proposition 1. If Xn is a Markov chain with transition probabilities p (x , y ) then for every sequence
of states x0,x1, . . . ,xn+m ,

(2) P(Xm+i = xm+i ∀ 0< i ≤ n ‖ X i = x i ∀ 0≤ i ≤m ) =
n
∏

i=1

p (xm+i−1,xm+i ).

Consequently, the n−step transition probabilities

(3) pn (x , y ) := P(Xn+m = y ‖ Xm = x )

depend only on the time lag n and the initial and terminal states x , y , but not on m .

Proof. The first statement can be proved by a completely routine induction argument, using the
definition of a Markov chain and elementary properties of conditional probabilities. The second
follows from the first, by summing over all possible sequences xm+i of intermediate states: the
right side of equation (2) makes it clear that this sum does not depend on m , since the factors in
the product depend only on the transitions x i ,x i+1 made, and not on the times at which they are
made. �

1.2. Chapman-Kolmogorov Equations and the Transition Probability Matrix. Assume hence-
forth that {Xn}n≥0 is a discrete-time Markov chain on a state spaceX with transition probabili-
ties p (i , j ). Define the transition probability matrix P of the chain to be theX ×X matrix with
entries p (i , j ), that is, the matrix whose i th row consists of the transition probabilities p (i , j ) for
j ∈X :

(4) P= (p (i , j ))i ,j∈X

If X has N elements, then P is an N ×N matrix, and if X is infinite, then P is an infinite by
infinite matrix. Also, the row sums of Pmust all be 1, by the law of total probabilities. A matrix
with this property is called stochastic.
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Definition 2. A nonnegative matrix is a matrix with nonnegative entries. A stochastic matrix
is a square nonnegative matrix all of whose row sums are 1. A substochastic matrix is a square
nonnegative matrix all of whose row sums are ≤ 1. A doubly stochastic matrix is a stochastic
matrix all of whose column sums are 1.

Observe that if you start with a stochastic matrix and delete the rows and columns indexed
by a set of states i , you get a substochastic matrix. The resulting substochastic matrix contains
information about the so-called first-passage times to various states, as you will see in one of the
homework problems.

Proposition 2. The n−step transition probabilities pn (i , j ) are the entries of the nth power Pn

of the matrix P. Consequently, the n−step transition probabilities pn (i , j ) satisfy the Chapman-
Kolmogorov equations

(5) pn+m (i , j ) =
∑

k∈X
pn (i , k )pm (k , j ).

Proof. It is easiest to start by directly proving the Chapman-Kolmogorov equations, by a dou-
ble induction, first on n , then on m . The case n = 1, m = 1 follows directly from the definition
of a Markov chain and the law of total probability (to get from i to j in two steps, the Markov
chain has to go through some intermediate state k ). The induction steps are left as an exercise.
Once the Chapman-Kolmogorov equation is established, it follows that the n−step transition
probabilities pn (x , y ) are the entries of Pn , because equation (5) is the rule for matrix multiplica-
tion. �

Suppose now that the initial state X0 is random, with distribution ν , that is,

Pν{X0 = i }= ν (i ) for all states i ∈X .

(Note: Henceforth when a probability distribution ν is used as a superscript as above, it denotes
the initial distribution, that is, the distribution of X0.) Then by the Chapman-Kolmogorov equa-
tions and the law of total probability,

Pν{Xn = j }=
∑

i

ν (i )pn (i , j ),

equivalently, if the initial distribution is νT (here we are viewing probability distributions onX
as row vectors) then the distribution after n steps is νTPn . Notice that if there is a probability
distribution ν on X such that νT = νTP, then νT = νTPn for all n ≥ 1. Consequently, if the
Markov chain has initial distribution ν then the marginal distribution of Xn will be ν for all n ≥ 1.
For this reason, such a probability distribution is called stationary:

Definition 3. A probability distribution π onX is stationary if

(6) πT =πTP

1.3. Accessibility and Communicating Classes.

Definition 4. A state j is said to be accessible from state i if there is a positive-probability path
from i to j , that is, if there is a finite sequence of states k0, k1, . . . , km such that k0 = i , km = j ,
and p (k t , k t+1) > 0 for each t = 0, 1, . . . , m − 1. States i and j are said to communicate if each is
accessible from the other. This relation is denoted by i ↔ j .

Fact 1. Communication is an equivalence relation. In particular, it is transitive: if i communicates
with j and j communicates with k then i communicates with k .
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The proof is an exercise. It follows that the state spaceX is uniquely partitioned into commu-
nicating classes (the equivalence classes of the relation↔). If there is only one communicating
class (that is, if every state is accessible from every other) then the Markov chain (or its transition
probability matrix) is said to be irreducible. In general, if there is more than one communicating
class, then states in one communicating classC1 may be accessible from states in another class
C2; however, in such a case no state ofC2 can be accessible from a state ofC1 (why?).

Definition 5. The period of a state i is the greatest common divisor of the set {n ∈N : pn (i , i )>
0}. If every state has period 1 then the Markov chain (or its transition probability matrix) is called
aperiodic.

Note: If i is not accessible from itself, then the period is the g.c.d. of the empty set; by con-
vention, we define the period in this case to be +∞. Example: Consider simple random walk
on the integers. If at time zero the walk starts in state X0 = 0 then at any subsequent even time
the state must be an even integer, and at any odd time the state must be an odd integer (why?).
Consequently, all states have period 2.

Fact 2. If states i , j communicate, then they must have the same period. Consequently, if the
Markov chain is irreducible, then all states have the same period.

The proof is another easy exercise. There is a simple test to check whether an irreducible
Markov chain is aperiodic: If there is a state i for which the 1−step transition probability p (i , i )>
0, then the chain is aperiodic.

Fact 3. If the Markov chain has a stationary probability distribution π for which π(i ) > 0, and if
states i,j communicate, then π(j )> 0.

Proof. It suffices to show (why?) that if p (i , j ) > 0 then π(j ) > 0. But by definition (6), π(j ) =
∑

k π(k )p (k , j )≥π(i )p (i , j ). �

2. FINITE STATE MARKOV CHAINS

2.1. Irreducible Markov chains. If the state space is finite and all states communicate (that is,
the Markov chain is irreducible) then in the long run, regardless of the initial condition, the
Markov chain must settle into a steady state. Formally,

Theorem 3. An irreducible Markov chain Xn on a finite state space X has a unique stationary
distribution π. Furthermore, if the Markov chain is not only irreducible but also aperiodic, then
for any initial distribution ν ,

(7) lim
n→∞

Pν{Xn = j }=π(j ) ∀ j ∈X

The remainder of this section is devoted to the proof of this theorem. Assume throughout that
the hypotheses of Theorem 3 are met, and letP be the transition probability matrix of the Markov
chain. We will prove Theorem 3 by studying the action of the transition probability matrix on the
set P =PX of probability distributions onX . Recall from sec. 1.2 above that if νT is the initial
distribution of the Markov chain then νTPn is the distribution after n steps. Thus, the natural
action of the transition probability matrix onP is

νT 7→ νTP.



MARKOV CHAINS: BASIC THEORY 5

Notice that if νT is a probability vector, then so is νTP, because
∑

j

(νTP)j =
∑

j

∑

i

ν (i )p (i , j )

=
∑

i

∑

j

ν (i )p (i , j )

=
∑

i

ν (i )
∑

j

p (i , j )

=
∑

i

ν (i ),

the last because the row sums of P are all 1. This implies that the mapping νT 7→ νTP takes
the set P into itself. It also implies (by induction on n) that Pn is a stochastic matrix for every
n = 1, 2, . . . , because each row of P is a probability vector.

2.2. The N−Simplex. The setPX is called the N−simplex, where N is the cardinality of the state
spaceX : it is the subset of RN gotten by intersecting the first orthant (the set of all vectors with
nonnegative entries) with the hyperplane consisting of all vectors whose entries sum to 1. The
crucial geometric fact aboutP is this:

Proposition 4. The N−simplex P is a closed and bounded subset of RN . Consequently, by the
Heine-Borel Theorem, it is compact.

Proof. Exercise: Show thatP is closed and bounded. (This is an good test of your command of
elementary real analysis.) �

2.3. The Krylov-Bogoliubov Argument. There is a very simple argument, due to Krylov and Bo-
goliubov, that a stationary distribution always exists. It is a very useful argument, because it
generalizes to many other contexts. Furthermore, it shows that there are stationary distributions
even for finite-state Markov chain that are not irreducible.

The argument turns on the fact that the probability simplex P is compact. This implies that
it has the Bolzano-Weierstrass property: Any sequence of vectors in P has a convergent subse-
quence. Fix a probability vector ν ∈P (it doesn’t matter what), and consider the so-called Cesaro
averages

(8) νT
n := n−1

n
∑

k=1

νTPk .

Observe that each average νT
n is a probability vector (because an average of probability vectors

is always a probability vector), and so each νT
n is an element of P . Consequently, the sequence

νT
n has a convergent subsequence:

(9) lim
k→∞

νT
n k
=πT .

Claim: The limit of any subsequence of νT
n is a stationary distribution for P.
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Proof. Denote the limit by π, as in (9). Since the mapping µT 7→ µTP is continuous (exercise; or
see the proof of Theorem 6 below),

πTP= lim
k→∞

νT
n k
P

= lim
k→∞

n−1
k

n k
∑

j=1

νTPjP

= lim
k→∞

n−1
k

n k+1
∑

j=2

νTPj

= lim
k→∞

n−1
k







n k
∑

j=1

νTPj +νTPn k+1−νTP







= lim
k→∞

n−1
k

n k
∑

j=1

νTPj

=πT .

(In words: Multiplying the Cesaro average by P has the effect of changing only the first and last
term in the average. When this is divided by n k , it converges to zero in the limit.) Thus, πT is a
stationary distribution. �

2.4. Total Variation Metric. To prove uniqueness of the stationary distribution under the hy-
potheses of Theorem 3, we will investigate more closely the action of the transition probability
matrix on the simplex. The most natural metric (distance function) on the simplexP is not the
usual Pythagorean distance, but rather the total variation metric, or taxicab distance. This is
defined as follows: For any two probability distributions ν ,µ∈P ,

d (µ,ν ) = ‖µ−ν‖T V :=
1

2

∑

i∈X
|ν (i )−µ(i )|

The factor 1/2 is a convention, but a long-established one (it ensures that the distance is never
larger than one). It is an exercise to show that the following is an equivalent definition:

‖µ−ν‖T V =max
A⊂X
(µ(A)−ν (A))

(Hint: Use the fact that bothµ and ν are probability distributions.) Next term you will learn more
about the total variation metric; all we need for now is that the two formulas above give the same
value. One other thing (also very easy to check): The total variation metric is equivalent to the
Pythagorean metric, in the sense that a sequence of probability vectors converges in the total
variation metric if and only if it converges in the Pythagorean metric.

Proposition 5. Assume that the entries of P are all strictly positive. Then the mapping νT 7→ νTP
is a strict contraction of the simplex P relative to total variation distance, that is, there exists
0<α< 1 such that for any two probability vectors µ,ν

‖νTP−µTP‖T V ≤α‖νT −µT ‖T V

Proof. Since every entry of P is strictly positive, there is a real number ε > 0 such that p (i , j )≥ ε
for every pair of states i , j . Notice that Nε ≤ 1, where N is the total number of states, because
the row sums of P are all 1. We may assume (by choosing a slightly smaller value of ε > 0, if



MARKOV CHAINS: BASIC THEORY 7

necessary) that 1−Nε > 0. Define q (i , j ) = (p (i , j )− ε)/(1−Nε), and let Q be the matrix with
entries q (i , j ). Then Q is a stochastic matrix, because its entries are nonnegative (by the choice
of ε), and for every state i ,

∑

j

q (i , j ) = (1−Nε)−1
∑

j

p (i , j )− (1−Nε−1)
∑

j

ε = 1,

since the row sums of P are all 1. Observe that P = (1−Nε)Q+ ε J , where J is the N ×N matrix
with all entries 1.

Now consider the total variation distance between νTP and µTP. Using the fact that
∑

i ν (i ) =
∑

i µ(i ) = 1, we have

2‖νTP−µTP‖T V =
∑

j

|(νTP)j − (µTP)j |

=
∑

j

|
∑

i

(ν (i )p (i , j )−µ(i )p (i , j )|

=
∑

j

|
∑

i

(ν (i )−µ(i ))q (i , j )(1−Nε)|.

Factor out (1−Nε) :=α. What’s left is
∑

j

|
∑

i

(ν (i )−µ(i ))q (i , j )| ≤
∑

j

∑

i

|ν (i )−µ(i )|q (i , j )

=
∑

i

|ν (i )−µ(i )|
∑

j

q (i , j )

=
∑

i

|ν (i )−µ(i )|

= 2‖νT −µT ‖T V .

�

2.5. Contraction Mapping Fixed Point Theorem. What do we gain by knowing that the action
of the transition probability matrix on the simplex is a contraction? First, it tells us that if we start
the Markov chain in two different initial distributions, then the distributions after one step are
closer than they were to start. Consequently, by induction, after n steps they are even closer: in
fact, the total variation distance will decrease by a factor of α at each step, and so will approach
zero exponentially quickly as n →∞. This means that the Markov chain will ultimately “forget”
its initial distribution.

Variations of this argument occur frequently not only in probability theory but in all parts of
mathematics. Following is an important theorem about contractive mappings that formalizes
the conclusions of the preceding argument.

Theorem 6. Let (S, d ) be a compact metric space, and F : S → S a strict contraction, that is, a
function such that for some real number α< 1,

(10) d (F (x ), F (y ))≤αd (x , y ) for all x , y ∈S.

Then F has a unique fixed point z ∈ S (that is, a point such that F (z ) = z ), and the orbit of every
point x ∈S converges to z , that is, if F n is the nth iterate of F , then

(11) lim
n→∞

F n (x ) = z .
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Proof. First, notice that if F is a contraction, then it must be continuous. (Exercise: check this.)
Second, if F is strictly contractive with contraction constant α as in (10), then for any point x ∈S
and every n = 1, 2, . . . ,

(12) d (F n (x ), F n+1(x ))≤αn d (x , F (x ));

this follows from the assumption (10), by an easy induction argument. Now because the space
S is compact, it has the Bolzano-Weierstrass property: every sequence has a convergent subse-
quence. Hence, for any point x ∈S the sequence {F n (x )}n≥1 has a convergent subsequence. The
limit z of any such subsequence must be a fixed point of F . Here is why: If

z = lim
k→∞

F n k (x )

exists, then by continuity of F ,
F (z ) = lim

k→∞
F n k+1(x );

but by (12),
d (F n k (x ), F n k+1(x ))≤αn k d (x , F (x )),

and this converges to 0 as k → ∞, since α < 1. Consequently, the two sequences F n k (x ) and
F n k+1(x ) cannot converge to different limits, and so it follows that z = F (z ).

This proves that the limit of any convergent subsequence of any orbit F n (x ) must be a fixed
point of F . To complete the proof, it suffices to show there is only one fixed point. (Exercise: Why
does this imply that every orbit F n (x )must converge?) Suppose there were two fixed points

z 1 = F (z 1) and z 2 = F (z 2).

By the assumption (10),
d (z 1, z 2) = d (F (z 1), F (z 2))≤αd (z 1, z 2).

Since α< 1, it must be that d (z 1, z 2) = 0, that is, z 1 and z 2 must be the same point. �

2.6. Proof of Theorem 3. We have now shown that (a) if the transition probability matrix P has
strictly positive entries then the mapping νT 7→ νTP is a strict contraction of the simplexP , (b ) a
strict contraction of a compact metric space has a unique fixed point, and (c) all orbits approach
the fixed point. It follows that if P has strictly positive entries then the conclusions of Theorem 3
all hold. Thus, it remains to show how to relax the requirement that the entries of P are strictly
positive.

Lemma 7. Let P be the transition probability matrix of an irreducible, aperiodic, finite-state
Markov chain. Then there is an integer m such that for all n ≥ m , the matrix Pn has strictly
positive entries.

This is where the hypothesis of aperiodicity is needed. The result is definitely not true if the
Markov chain is periodic: for example, consider the two-state Markov chain with transition prob-
ability matrix

P=
�

0 1
1 0

�

.

(Exercise: Check what happens when you take powers of this matrix.)

Proof of Theorem 3. The proof of Lemma 7 will be given later. For now, let’s take it as true; then
if P is aperiodic and irreducible, as assumed in Theorem 3, there exists an integer m ≥ 1 such
that Q := Pm has strictly positive entries. We have already observed that powers of a stochastic
matrix are also stochastic matrices, and so Q satisfies the hypotheses of Proposition 5. Hence,
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Q is strictly contractive on the simplex P . Therefore, by the Contraction Mapping Fixed Point
Theorem, there exists a unique probability vector πT such that

(13) πT =πTQ=πTPm ,

and such that for all νT ∈P ,

lim
n→∞

νTQn = lim
n→∞

νTPnm =πT .

This last applies not only to νT , but also to νTP,νTP2, . . . , since these are all probability vectors.
Consequently, for every k = 0, 1, . . . , m −1,

lim
n→∞

νTPnm+k =πT .

Now if a sequence of vectors {vn}n≥1 has the property that the subsequences {vnm+k }n≥1, for
k = 0, 1, . . . m −1, all converge to the same limit w , then the entire sequence must converge to w .
(Exercise: Explain why.) Thus,

(14) lim
n→∞

νTPn =πT

This is equivalent to the statement (7).

It remains to show thatπ is a stationary distribution, and thatπ is the only stationary distribu-
tion. Set µT :=πTP; then by equation (13) (multiply both sides by P on the right), µT =µTQ, and
so µ is a stationary distribution forQ. But πT is the unique stationary distribution ofQ, sinceQ
is strictly contractive on the simplex; thus, µ=π, and so π is a stationary distribution for P. That
it is the only stationary distribution follows from (14). �

The proof of Lemma 7 will make use of the following consequence of the Euclidean algorithm.
You will find a proof in any respectable book on elementary number theory or abstract algebra.

Lemma 8. If d is the greatest common divisor of m , n ∈N, then there exist integers s , t (not neces-
sarily positive) such that

d = s m + t n .

More generally, if d is the greatest common divisor of a finite set of integers m1, m2, . . . , mr , then
there exist integers t1, t2, . . . tr such that

d =
r
∑

i=1

t i m i .

Proof of Lemma 7. First, notice that it is enough to show that the diagonal entries of Pn are all
eventually positive. Here is why: Suppose that pn (x ,x ) > 0 for all n ≥ m = m (x ). Let y be
any other state. Since the Markov chain is irreducible, there is an integer k = k (x , y ) such that
pk (x , y )> 0. But it then follows from the Chapman-Kolmogorov equations that

pk+n (x , y )≥ pn (x ,x )pk (x , y )> 0 ∀ n ≥m .

Thus, if n ≥maxx m (x )+maxx ,y k (x , y ) then all entries of Pn will be positive.

Therefore, we need only show that for each state x the return probabilities pn (x ,x ) are positive
for all large n . Equivalently, we must show that the set

Ax := {n ≥ 1 : pn (x ,x )> 0}

contains all but finitely many elements of the natural numbers N. For this, we will use two basic
properties of Ax : First, by the Chapman-Kolmogorov equations, Ax is closed under addition, that
is, if m , n ∈ Ax are two elements of A i then m +n ∈ Ax . This implies also that Ax is closed under
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scalar multiplication by positive integers, that is, if m ∈ Ax then all multiples of m are elements
of Ax . Second, the greatest common divisor of the numbers in Ax is 1, because by hypothesis
the Markov chain is aperiodic. This implies that there is a finite subset {m i }1≤i≤r of Ax whose
greatest common divisor is 1. (Exercise: Explain why.) Hence, by Lemma 8, there are integers t i

such that
∑

t i m i = 1.

Set

t∗ = max
1≤i≤r

|t i | and m+ =
r
∑

i=1

m i .

Any integer n must lie between successive multiples of m+, so there exist a nonnegative in-
teger k and an integer 0 ≤ s <m+ such that n = k m+ + s . Using the fact that

∑

i t i m i = 1, we
conclude that

n =
r
∑

i=1

k m i + s =
r
∑

i=1

(k + s t i )m i .

If k ≥m+t∗ then all of the coefficients k + s t i in this sum will be nonnegative. Thus, Ax contains
all integers larger than m 2

+t∗. �

This argument actually proves the following fact, which we record for later use:

Corollary 9. If A is a subset of the natural numbers that is closed under addition, and if the greatest
common divisor of the elements of A is 1, then A contains all but at most finitely many of the
natural numbers.

3. STOPPING TIMES, STRONG MARKOV PROPERTY

Definition 6. Let {Xn}n≥0 be a Markov chain on finite or countable state space X . A stopping
time is a random variable T with values in the set Z+∪{∞} such that for every m ∈Z+, the event
{T =m } is determined by the values X0, X1, . . . Xm .

Example 5. The first passage time to a state x is the random variable Tx = T 1
x whose value is the

first time n ≥ 1 that Xn = x , or∞ if there is no such (finite) n . The k th passage time is the random
variable T k

x that records the time of the k th visit to x , or∞ if the Markov chain does not visit the
state x at least k times. Clearly, T k

x is a stopping time.

Example 6. Here is a random time that is not a stopping time: Fix a state x , and let L be the
last time n ≤ 100 that Xn = x . This isn’t (in general) a stopping time, because (for instance) to
determine whether L = 97, you would need to know not only the first 97 steps, but also the 98th
through 100th.

Proposition 10. [Strong Markov Property.] Let T be a stopping time for the Markov chain {Xn}n≥0.
Then the Markov chain “regenerates” at time T , that is, the future XT+1, XT+2, . . . is conditionally
independent of the past X0, X1, . . . , XT−1 given the value of T and the state XT = x at time T . More
precisely, for any m <∞ and all states x0,x1, . . .xn+m ∈X such that T =m is possible,

(15) P(XT+i = xm+i ∀1≤ i ≤ n ‖ T =m and X i = x i ∀0≤ i ≤m ) =
n
∏

i=1

p (xm+i−1,xm+i ).
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Proof. The event {X i = x i ∀ i ≤m } determines whether the event T =m occurs or not. If not,
the event {T =m } ∩ {X i = x i ∀ i ≤m } has probability 0, and therefore is impossible. Otherwise
(and this is the whole point of Definition 6), the condition T =m in the conditional probability
(15) is redundant, as

{T =m }∩ {X i = x i ∀ i ≤m }= {X i = x i ∀ i ≤m }.

Therefore, the assertion (15) follows from the ordinary Markov property (Proposition 1). �

4. RECURRENCE AND TRANSIENCE

Definition 7. Let {Xn}n≥0 be a Markov chain on a finite or countable state spaceX , and for any
state x let Tx = T 1

x be the first passage time to x . A state x is

(a) recurrent if Px {Tx <∞}= 1;
(b) transient if Px {Tx <∞}< 1;
(c) positive recurrent if E x Tx <∞; and
(d) null recurrent if it is recurrent but E x Tx =∞.

Before looking at some examples, let’s do some preliminary reasoning that will lead to alterna-
tive conditions for transience and recurrence that are often easier to check than the conditions
in the definition. First, suppose that state x is recurrent; by definition, if the chain starts at X0 = x
then it is certain to return. But according to the Strong Markov Property, the chain regenerates
at the time T 1

x of first return, that is, the future behaves like a brand new version of the Markov
chain started at state x . Thus, it is certain that the state x will be revisited a second time, and
similarly, by induction, x will be revisited at least k times, for any k . So: If a state x is recurrent,
then it will be visited infinitely often.

Now suppose that x is transient. It is no longer certain that x will be revisited, but on the event
that it is, the chain will regenerate at time T 1

x , by the Strong Markov Property. Therefore, for every
k = 1, 2, . . . ,

(16) Px {T k
x <∞}= Px {Tx <∞}k .

Proof of (16). A formal proof goes by induction on k . The case k = 1 is obvious, so we need only
do the inductive step. Suppose, then, that the formula holds for all positive integers up to k ; we’ll
show that it then holds also for k +1. By the Strong Markov Property, for any integers m , n ≥ 1,

(17) Px (T k+1
x =m +n ‖ T k

x =m ) = Px {Tx = n}.

This follows from (15) by summing over all paths xm+1, . . .xm+n such that xm+i , x for i < n , but
xm+n = x . Summing (17) over n ≥ 1 gives

Px (T k+1
x <∞ ‖ T k

x =m ) = Px (Tx <∞).
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Now sum on m :

Px {T k+1
x <∞}=

∞
∑

m=1

Px (T k+1
x <∞ ‖ T k

x =m )Px {T k
x =m }

= Px (Tx <∞)
∞
∑

m=1

Px {T k
x =m }

= Px (Tx <∞)Px {T k
x <∞}

= Px (Tx <∞)k+1,

the last by the induction hypothesis. �

Note: This argument is typical of how the Strong Markov Property is used in doing formal proofs
in Markov chain theory. Since such arguments are tedious, and (should be) fairly obvious once
you have seen one example, I will omit them from here on.

Corollary 11. State x is recurrent if and only if the expected number of visits to x is infinite, that
is,

E x Nx =
∞
∑

n=0

pn (x ,x ) =∞, where(18)

Nx =
∞
∑

n=0

1{Xn = x }.

Proof. Since expectations and sums can always be interchanged (even when the sum has infin-
itely many terms, provided they are all nonnegative),

E x Nx = E x
∞
∑

n=0

1{Xn = x }=
∞
∑

n=0

Px {Xn = x }=
∞
∑

n=0

pn (x ,x ).

But Nx has another representation: it is one plus the number of indices k such that Tk <∞, since
each such index counts one visit to x . Hence,

E x Nx = 1+E x
∞
∑

k=1

1{T k
x <∞}

= 1+
∞
∑

k=1

Px {T k
x <∞}

= 1+
∞
∑

k=1

Px {Tx <∞}k

= 1/(1−Px {Tx <∞}) = 1/Px {Tx =∞}.

By definition, x is recurrent if Px {Tx <∞} = 1. Our calculation of E x Nx shows that this will be
the case precisely if E x Nx =∞. �

Corollary 12. Recurrence and transience are class properties: If x is recurrent and x communicates
with y then y is also recurrent.

Note: Positive and null recurrence are also class properties, as will be shown later. Corollary 12
implies that in an irreducible Markov chain, all states have the same type (recurrent or transient).



MARKOV CHAINS: BASIC THEORY 13

We call an irreducible Markov chain recurrent or transient according as its states are recurrent or
transient (and similarly for positive and null recurrence).

Proof. Suppose that x is recurrent, and that y communicates with x . Then y is accessible from x ,
and x is accessible from y , so there exist integers k , l ≥ 1 such that pk (x , y )> 0 and p l (y ,x )> 0.
By Chapman-Kolmogorov,

pk+n+l (y , y )≥ p l (y ,x )pn (x ,x )pk (x , y ),

so by the recurrence of x and Corollary 11,
∞
∑

n=0

pn (y , y )≥ p l (y ,x )pk (x , y )
∞
∑

n=0

pn (x ,x ) =∞.

It therefore follows from Corollary 11 that y is recurrent. �

Polya’s Theorem . Simple random walk in dimensions d = 1, 2 is recurrent, and in dimensions
d ≥ 3 is transient.

Proof. (Sketch) We’ll use Corollary 11. This requires approximations for (or bounds on) the re-
turn probabilities Pn (x ,x ) = Pn (0, 0). Simple random walk has period 2, so P2n+1(0, 0) = 0 for all
n . Thus, we need only worry about the return probabilities for even times P2n (0, 0). This proba-
bility is the probability that the sum of the 2n increments ξi is the 0 vector. The increments are
i.i.d. random vectors, with mean zero and a covariance matrix that I could calculate if I were any
good at that sort of thing. But for the purposes of this calculation, we don’t even need to know
the value — we only need to know that it is finite, because then the Local Central Limit Theorem
(which you can look up in your 304 notes, or in Greg Lawler’s Random Walk book) implies that

P2n (0, 0)∼C/n d /2

for some positive constant C that can be calculated from the covariance matrix. The sequence
1/n d /2 is summable if d > 2, but is not summable in d = 1, 2, and so the theorem follows. �

5. THE EXCURSION CHAIN

Assume in the remaining sections 5–7 that Xn is an irreducible Markov chain on a finite or
countable state space X with transition probability matrix P. Assume that there is a recurrent
state x . (Recall that if there is a recurrent state, then all states are recurrent, by Corollary 12.)
Suppose that the Markov chain Xn is started in state X0 = x . Keep a random list of states visited,
using the following rule: Start the list with just one item x ; for each n = 1, 2, . . . , add the state Xn

to the end of the list if Xn , y , but if Xn = x , erase everything on the list except the item x . The
sequence of random lists produced by this algorithm is called the excursion chain.

Example: If the sequence of states visited by the Markov chain Xn is x , y1, y2,x , y3, y4, . . . then the
succcessive states of the excursion chain are

x , x y1, x y1y2, x , x y3, x y3y4, . . . .

In general, the lists that can occur as states of the excursion chain are the finite words x y1y2 · · ·yk

of length≥ 1 such that (a) the letter x occurs only once in the word, at the beginning; and (b) for
every pair y j y j+1 (or x y1) of adjacent letters, the transition probability p (y j , y j+1) > 0, that is,
y j → y j+1 is an allowable jump of the Markov chain Xn . Denote the set of all such words byY .
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Definition 8. The excursion chain (or more properly, the x−excursion chain) is the Markov chain
on the state spaceY with transition probabilities

q (x y1y2 · · ·yk ,x y1y2 · · ·yk yk+1) = p (yk , yk+1) if yk+1 , x ;

q (x y1y2 · · ·yk ,x ) = p (yk ,x );

q (x ,x y ) = p (x , y ) if y , x ;

q (w , w ′)) = 0 otherwise.

Let F : Y → X be the projection on the last letter, that is, the mapping that assigns to each
word x y1 · · ·yk its last letter yk .

Lemma 13. Let Yn be a version of the excursion chain, that is, a Markov chain on the state space
Y with transition probability matrix Q = (q (u , v ))u ,v∈Y . Then F (Yn ) is a version of the original
Markov chain Xn , equivalently, F (Yn ) is a Markov chain onX with transition probability matrix
P.

Proof. Routine exercise. �

When does the excursion chain have a stationary distribution? Suppose that it does: call it ν .
By definition of a stationary distribution, the distribution ν must satisfy the system of equations
νT = νTQ. Now if w ∈Y is a word of length 2 or more, then there is only one word w ′ such that
q (w ′, w )> 0, namely, the word w ′ gotten by deleting the last letter of w . Hence, the steady state
equation for ν (w ) reads

ν (w ) = ν (w ′)q (w ′, w ).
Applying the same reasoning to ν (w ′) and iterating, we find that

(19) ν (x y1 · · ·yk ) = ν (x )p (x , y1)
k−1
∏

i=1

p (yi , yi+1).

This shows that there can be at most one stationary distribution for the excursion chain, and that
a stationary distribution exists if and only if there is a finite, positive value of ν (x ) such that

(20)
∞
∑

k=0

∑

y1y2···yk

ν (x )p (x , y1)
k−1
∏

i=1

p (yi , yi+1) = 1.

Proposition 14. The excursion chain has a stationary probability distribution ν if and only x is
a positive recurrent state of the Markov chain Xn , that is, E x Tx <∞. In this case, the stationary
distribution is given by (19), with

(21) ν (x ) = 1/E x Tx .

Proof. Consider the k th term of the outer sum in (20): This is a sum over all paths y1y2 · · ·yk of
length k that do not contain the state k . The union of all such paths is the event that the Markov
chain Xn will not revisit the state x in its first k steps. Thus, for each k ≥ 0,

∑

y1y2···yk

p (x , y1)
k−1
∏

i=1

p (yi , yi+1) = Px {Tx > k }.

Hence, the equation (20) reduces to

ν (x )
∞
∑

k=0

Px {Tx > k }= 1.
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The result (21) now follows, because the expectation of any nonnegative integer-valued random
variable N is given by E N =

∑

k≥0 P{N > k }. �

Corollary 15. If an irreducible Markov chain has a positive recurrent state x , then it has a station-
ary distribution π for which

(22) π(x ) = 1/E x Tx

Proof. We have just seen that the existence of a positive recurrent state x implies that the x−
excursion chain has a unique stationary distribution ν . We have also seen that the excursion
chain Yn projects (via the mapping F onto the last letter) to a version of the original Markov chain
Xn . It follows that the stationary distribution of the chain Yn projects to a stationary distribution
for Xn :

π(z ) =
∑

y :F (y )=z

ν (y ).

Exercise: Verify that stationary distributions project to stationary distributions. �

Later we will show that an irreducible Markov chain can have at most one stationary distribu-
tion π, and also that if there is a positive recurrent state then all states are positive recurrent. It
will then follow that the formula (22) must hold for all states x .

6. EXCURSIONS AND THE SLLN

The excursion chain introduced in the preceding section grows random words one letter at a
time. In this section, we will look at complete excursions, that is, the segments of the Markov
chain between successive visits to a distinguished state x . Once again, assume that Xn is an
irreducible, recurrent Markov chain on a finite or countable state spaceX with transition prob-
ability matrix P. Fix a state x , and for typographical ease, set

τ(k ) = T k
x for k = 1, 2, . . . .

Thus, the times τ(k ) mark the successive visits to state x . For convenience, set τ(0) = 0. The
excursions from state x are the random sequences (words)

W1 := (X0, X1, X2, . . . , Xτ(1)−1),(23)

W2 := (Xτ(1), Xτ(1)+1, Xτ(1)+2, . . . , Xτ(2)−1),

etc.

Since the Markov chain is recurrent, the stopping times τ(k ) are all finite, so the excursions all
terminate, that is, the excursions are finite words with letters in the alphabetX .

Lemma 16. Under Px , the excursions W1, W2, . . . are independent and identically distributed. Un-
der Py (where y , x ), the excursions W1, W2, . . . are independent, and W2, W3, . . . are identically
distributed.

Proof. Consider any finite sequence w1, w2, . . . , wk of possible excursions, with word represen-
tations

w j = (x j ,1,x j ,2, . . . ,x j ,m (j )).
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In order that these words be allowable as excursions, they may only include the letter x once, at
the very beginning. By the Markov property,

Px {Wj =w j ∀ j = 1, 2, . . . , k }=
k
∏

j=1







m (j )
∏

l=1

p (x j ,l ,x j ,l+1)






p (x j ,m (j )−1,x ).

(Note that the final factor p (x j ,m (j )−1,x ) in the inner product occurs because, in order that w j be
the j th excursion, the Markov chain must jump back to the state x at the conclusion of the excur-
sion.) Since this is a product of factors identical in form, it follows that the excursions W1, W2, . . .
are i.i.d. A similar calculation applies under the probability measure Py ; the only difference is
that the very first excursion must start with the letter y , rather than x , so its distribution differs
from the rest. �

This lemma is perhaps the most useful technical tool (along with the Strong Markov Property)
in the analysis of discrete Markov chains, because it provides a means for reducing problems
about the long-run behavior of the Markov chain to problems about sequences of i.i.d. random
variables and vectors.

Corollary 17. If there is a positive recurrent state x , then all states are positive recurrent.

Proof. Exercise. Hint: First show that if x is positive recurrent then

E x (Tx ‖ Ty < Tx )<∞ and E x (Tx ‖ Ty > Tx )<∞

for all states y , x . Then show that a y−excursion is contained in the conjunction of (i) an x−
excursion conditioned to have a visit to y , followed by (ii) a geometric number of x− excursions
conditioned not to visit to y , followed by (iii) an x− excursion conditioned to have a visit to y .
Alternatively, fashion an argument based on the SLLN for excursions formulated in Corollary 18
below. �

Definition 9. Let f :X →R be a real-valued function on the state spaceX . The additive exten-
sion of f to the set of finite words with letters inX is the function f+ that assigns to a finite word
w = (x1,x2, . . . ,xm ) the value

(24) f+(w ) :=
m
∑

i=1

f (x i ).

Corollary 18. Let f : X → R be a nonnegative (or bounded) function, and let f+ be its additive
extension. For any initial state y ∈X , with Py−probability one,

(25) lim
k→∞

k−1
k
∑

i=1

f+(Wi ) = E x f+(W1) = E x
τ(1)−1
∑

j=0

f (X j ).

In particular (use f ≡ 1), with Py−probability one,

(26) lim
k→∞

τ(k )/k = E xτ(1).

Proof. For y = x , this follows directly from the usual SLLN (Strong Law of Large Numbers) for
sums of i.i.d. nonnegative random variables, because by Lemma 16, under Px the random vari-
ables f+(W1), f+(W2), . . . are independent and identically distributed. On the other hand, if y , x
then under Py the distribution of the first excursion W1 may be different from that of the subse-
quent excursions W2, W3, . . . ; however, it is still the case that W2, W3, . . . are i.i.d. and have the same
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distribution (under Py ) as does W1 under Px (because all of the excursions after the first start at
x ). Hence, even though the distribution of f+(W1)may be different, this won’t affect the limiting
behavior in (25), because for large k the factor k−1 will dampen out the effect of f+(W1). �

Let’s consider the implications of (26). This states that for large k , the time of the k th visit to x
will (with probability approaching one as k →∞) be about k E xτ(1) +o(k ). But this means that
for large n , the number Nn = N x

n of visits to x by time n will be about n/E xτ(1). Recall (Corol-
lary 15) that if the Markov chain is positive recurrent, then there exists a stationary distribution
π for which π(x ) = 1/E xτ(1). (We don’t yet know that the stationary distribution is unique, but
we will prove this shortly.) Therefore, (26) implies that if the Markov chain is positive recurrent,
then the limiting fraction of time that the Markov chain spends in state x is π(x ), and this holds
regardless of the initial state y . On the other hand, if the Markov chain is null recurrent, then
E xτ(1) =∞, and so (26) implies that the limiting fraction of time spent in state x is 0. (This is
why null recurrent chains are called null recurrent.)

Theorem 19. Fix x ∈ X , and let Nn = N x
n be the number of visits to state x up to time n. If the

Markov chain is positive recurrent and irreducible, then there is a unique stationary probability
distribution π, and for all states x , y , with Py−probability 1,

(27) lim
n→∞

N x
n

n
=π(x )

If, on the other hand, the Markov chain is null recurrent, then there is no stationary probability
distribution, and for all states x , y , with Py−probability 1,

(28) lim
n→∞

N x
n

n
= 0

In either case, the Markov chain visits every state infinitely often.

Proof. The argument outlined in the paragraph preceding the statement of the theorem shows
that in both the positive and null recurrent cases,

(29) lim
n→∞

N x
n /n = 1/E x Tx

with Py−probability one, for any y ∈ X . In the null recurrent case, E x Tx =∞ for every state x
(Corollary 17), and so (28) follows. Assume now that the Markov chain has a stationary distribu-
tionπ (recall that in the positive recurrent case there is always at least one stationary distribution,
by Corollary 15). Since Pπ =

∑

y π(y )P
y is a weighted average of the probability measures Py , the

convergence (29) holds with Pπ−probability 1. Since the ratios N x
n /n are bounded between 0

and 1, the Bounded Convergence Theorem implies that

lim
n→∞

EπN x
n /n = 1/E x Tx .

But

EπN x
n /n = Eπn−1

n
∑

j=1

1{X j = x }

= n−1
n
∑

j=1

Pπ{X j = x }=π(x ),
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since π is a stationary distribution. Therefore,

(30) π(x ) = 1/E x Tx

for all states x . It follows that there is no stationary distribution in the null recurrent case (be-
cause (30) would force it to be identically zero) and in the positive recurrent case there can only
be one stationary distribution.

It remains to prove the final assertion of the theorem, that every state is visited infinitely of-
ten, with probability one. In the positive recurrent case, this follows directly from (27), because
π(x )> 0. (Recall [Fact 3] that every state in an irreducible, positive recurrent Markov chain must
have positive stationary probability.) Now consider the null recurrent case: Fix states x , y , z ,
and consider the event that an x−excursion Wi includes a visit to z . This event has positive
Px−probability, because by irreducibility there exist positive probability paths from x to z and
from z back to x , which may be pieced together to give an x−excursion with a visit to z . There-
fore, the SLLN (25) implies that, under Py , the limiting proportion of the excursions Wi that visit
z is positive. �

7. COUPLING AND KOLMOGOROV’S LIMIT THEOREM

Theorem 20. Assume that Xn is an aperiodic, positive recurrent, irreducible Markov chain onX ,
and let π be the unique stationary distribution. Then for all states x , y ,

(31) lim
n→∞

Px {Xn = y }=π(y ).

This is the fundamental limit theorem of discrete Markov chain theory. Several proofs are
now known, including one (the one most commonly given in textbooks) based on another deep
theorem, the Feller-Erdös-Pollard theorem of renewal theory.1 The proof to be given here avoids
the FEP Theorem; instead, it relies on a useful technique known as coupling, first invented by
Doeblin several years after Kolmogorov published his work on countable state Markov chain.

Proof of Theorem 20. The strategy of the coupling argument is this: Suppose that we could con-
struct two versions Xn and X ∗n of the Markov chain simultaneously (on the same probability
space (Ω,F , P)) in such a way that

X0 = x ;(32)

X ∗0 ∼π; and(33)

Xn =X ∗n eventually with probability 1.(34)

(The third condition is the reason for the term “coupling”.) Since X ∗n starts in the stationary
distribution π, at any subsequent time the distribution of X ∗n will still be π. On the other hand,
for large n the chains Xn and X ∗n will be in the same state, by the third requirement, so

|P{Xn = y }−π(y )|= |P{Xn = y }−P{X ∗n = y }| ≤ P{Xn ,X ∗n}→ 0

as n→∞. Kolmogorov’s theorem then follows.

There are a number of ways to construct the coupling Xn , X ∗n . The one followed here is com-
pletely elementary, relying only what we already know about Markov chain theory. The idea is to
run the chains Xn and X ∗n independently, starting from initial states X0 = x and X ∗0 ∼π, until the

1This is what is done in Ross. Unfortunately, Ross does not prove the Feller-Erdös-Pollard theorem, so nothing is
really proved.



MARKOV CHAINS: BASIC THEORY 19

first time τ that they meet (i.e., τ is the first n such that Xn = X ∗n ). Then, after time τ, we force
the two chains to follow the same path, so that Xn =X ∗n for all n ≥τ.

Following is a more precise description of the construction: Let Xn and X ′n be independent
versions of the Markov chain, with initial states X0 = x and X ′0 ∼ π. (Observe that independent
realizations of a Markov chain can always be constructed – for instance, just use two independent
random number generators in conjunction with the transition probabilities to determine the
jumps.) Define

(35) τ :=min{n ≥ 0 : Xn =X ′n};

we will prove below that τ<∞with probability one. Finally, define

X ∗n =X ′n for n ≤τ, and(36)

X ∗n =Xn for n ≥τ.

This definition is valid, because Xτ =X ′τ.

To prove that τ<∞ with probability one, and that the process X ∗n just constructed is actually
a version of the Markov chain, we shall look more closely at the sequence Vn := (Xn , X ′n ) that
tracks the states of both X and X ′ together. Since the sequences Xn and X ′n are independent,
by hypothesis, the vector process Vn is itself a Markov chain on the state space X ×X , with
transition probabilities

(37) q ((x ,x ′), (y , y ′)) = p (x , y )p (x ′, y ′).

(This is easily checked, using the fact that each of the processes Xn and X ′n ) has the Markov
property separately, together with the mutual independence.)

Lemma 21. The Markov chain Vn is irreducible and positive recurrent, with stationary distribu-
tion ν given by

(38) ν ((x ,x ′)) =π(x )π(x ′)

Proof. It is routine to check that the probability distribution ν is stationary (exercise), and so it
follows by Theorem 19 that Vn is positive recurrent. The tricky thing here is to show that Vn is
irreducible. This is where we will use (finally!) the assumption that the original Markov chain Xn

is aperiodic.

By hypothesis, the chain Xn is aperiodic and irreducible. Fix x ∈ X , and consider the set
Ax = {n ≥ 1 : pn (x ,x ) > 0}. By the Chapman-Kolmogorov equations, the set Ax is closed under
addition (see the proof of Lemma 7). Furthermore, by irreducibility, the greatest common divisor
of Ax is 1. Consequently, by Corollary 9, all but at most finitely many of the natural numbers are
included in Ax . Thus, there is an integer nx such that

pn (x ,x )> 0 ∀n ≥ nx

Now let x , y ∈ X be any two states. Since the Markov chain Xn is irreducible, there is a
positive-probability path from x to y , of length (say) kx ,y . Hence, by Chapman-Kolmogorov and
the result of the preceding paragraph,

pn (x , y )> 0 ∀n ≥ nx +kx ,y .

Finally, consider any four states x ,x ′, y , y ′ (not necessarily distinct). For all n ≥ max(nx +
kx ,y , nx ′ +kx ′,y ′ ),

q ((x ,x ′), (y , y ′)) = p (x , y )p (x ′, y ′)> 0.
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This proves that the vector chain Vn is irreducible, and also aperiodic. �

Lemma 21 implies that the Markov chain Vn is irreducible and recurrent. Therefore, by Theo-
rem 19, it must visit every state inX ×X infinitely often, and in particular, it must visit the state
(x ,x ) at least once. Thus, τ<∞with probability one. Clearly, τ is a stopping time for the Markov
chain Vn , and so the Strong Markov Property holds: Conditional on τ=m and on the history of
Vn up to time m , the future depends only on the state Vm = (Xm , Xm ) = (z , z ), and has the same
law as a pair of independent versions of Xn both started at z . It follows (exercise) that the spliced
process X ∗n defined by (36) is a version of X ′n .

�


