
HARMONIC FUNCTIONS AND MARKOV CHAINS

1. HARMONIC FUNCTIONS

Let (Xn )n≥0 be a Markov chain with (finite or countable) state spaceX and one-step transi-
tion probabilities p (x , y ). A real-valued function h :X → R is said to be harmonic at the site
x ∈X if

(1) h (x ) =
∑

y ∈X
p (x , y )h (y ) = E x h (X1).

If for some set A ⊂X the function h is harmonic at every x ∈ A, then h is said to be harmonic
in A; if h is harmonic inX then we just say that h is harmonic.

Theorem 1. Assume that h is harmonic in A, and let T be a finite stopping time such that Xn ∈ A
for every n < T (for instance, T might be the first n such that Xn 6∈ A). Then for every n = 0, 1, 2, . . .
and every x ∈ A

(2) h (x ) = E x h (XT ∧n ).

This should remind you of the Wald identities for random walks, and in fact the identity
(2) can be used in much the same way as we used the Wald identities to solve first-passage
problems for random walks. Some examples will be given in later sections of these notes.

Proof. Induction on n . The case n = 0 is trivial, because in this case the identity (2) reduces to
the obvious equality h (x ) = E x h (X0). For the induction step, assume that the identity holds for
n ; then by the law of total probability,

E x h (XT ∧(n+1)) = E x h (XT ∧(n+1))1{T ≤ n}+E x h (XT ∧(n+1))1{T > n}
= E x h (XT ∧n )1{T ≤ n}+E x h (Xn+1)1{T > n}.(3)

Now on the event T > n it must be the case that Xn ∈ A, so by the Markov property,

E x h (Xn+1)1{T > n}=
∑

y ∈A

E x h (Xn+1)1{Xn = y }1{T > n}

=
∑

y ∈A

E x (h (Xn+1) |Xn = y )P x {Xn = y and T > n}

=
∑

y ∈A

E y (h (X1))P
x {Xn = y and T > n}

=
∑

y ∈A

h (y )P x {Xn = y and T > n}

= E x h (Xn )1{T > n}.
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Combining this with (3) gives

E x h (XT ∧(n+1)) = E x h (XT ∧n )1{T ≤ n}+E x h (Xn )1{T > n}
= E x h (XT ∧n )1{T ≤ n}+E x h (XT ∧n )1{T > n}
= E x h (XT ∧n ),

and so the result follows by the induction hypothesis. �

Definition 1. A function h (n , x ) of both time n = 0, 1, 2, . . . and location x ∈ X is said to be
space-time harmonic at (n , x ) if

h (n , x ) =
∑

y ∈X
h (n +1, y )p (x , y ) = E x h (n +1, X1).

Theorem 2. Assume that h is space-time harmonic at every (n , x ) such that x ∈ A, and let T be
a stopping time such that Xn ∈ A for every n < T . Then for every n = 0, 1, 2, . . . ,

(4) h (0, x ) = E x h (T ∧n , XT ∧n ).

Proof. The proof is nearly identical to that of Theorem 1. Details are left as an exercise. �

2. HARMONIC FUNCTIONS FOR GALTON-WATSON PROCESSES

Let Zn be a Galton-Watson process with offspring distribution (pk )k=0,1,2,... and initial condi-

tion Z0 = 1. Thus, Zn+1 =
∑Zn

i=1ξ
(n+1)
i where the random variables ξ(n )i are independent, identi-

cally distributed with common distribution P {ξ(n )i = k}= pk . Set

ϕ(t ) =
∞
∑

k=0

t k pk and µ=
∞
∑

k=0

k pk .

Proposition 3. If 0 < ζ ≤ 1 is the smallest root of the fixed-point equation ϕ(ζ) = ζ then the
function h (m ) = ζm is harmonic for the Galton-Watson process.

Proof. Simple calculation. �

Corollary 4. Assume that p0 > 0 and that ζ< 1. Then P {extinction}= ζ.

We have already proved this by other methods earlier; here we will show that it can also
be deduced from the identity (2). First, we must prove the following lemma concerning the
behavior of the Galton-Watson process on the event that it does not reach extinction.

Lemma 5. For any Galton-Watson process, with probability one either Zn = 0 eventually or
limn→∞Zn =∞.

Proof. (Sketch) For any integer k ≥ 1, at any time n when Zn ≤ k there is conditional probability
at least p k

0 > 0 that Zn+1 = 0. Consequently, there cannot be infinitely many times n such that
1≤ Zn ≤ k , because then there would be infinitely many chances to hit an event of probability
p k

0 . Thus, for every k = 1, 2, . . . there are only finitely many times n when Zn = k , and so either
Zn = 0 eventually or Zn wanders off to +∞. �
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Proof of Corollary 4. Let Tm be the first time n that Zn ≥m , or Tm =∞ if there is no such n .
By the preceding lemma, on the event Tm =∞ it must be the case that Zn = 0 eventually. By
identity (2), for every n = 1, 2, 3, . . .

ζ= E ζZTm∧n .

As n→∞ the random variable ζZTm∧n converges to ζTm ; since all of these random variables are
uniformly bounded by 1 the bounded convergence theorem implies that

ζ= E ζZTm .

As m → ∞ the random variables ZTm
converge to ∞ on the event that the Galton-Watson

process does not reach extinction, but converge to 0 on the event of extinction. Once again, by
the bounded convergence theorem,

ζ= ζ0×P (Zn = 0 eventually) +0×P (Zn →∞).
�

3. BIRTH-AND-DEATH CHAINS

4. A RECURRENCE CRITERION


