STATISTICS 313: STOCHASTIC PROCESSES II
 HOMEWORK ASSIGNMENT 8 DUE WEDNESDAY NOVEMBER 30

In the following problems, $W(t)$ is a standard Wiener process, $M(t)$ is the maximum up to time t, and for any $a>0, \tau(a)$ is the first time that $W(t)$ visits a; thus,

$$
\begin{aligned}
M(t) & =\max \{W(s): s \leq t\} \\
\tau(a) & =\min \{t: W(t)=a\}
\end{aligned}
$$

Problem 1. Calculate each of the following probabilities. (Give your answers as rational numbers or decimals to at least 3 places. You might find a table of the standard normal cumulative distribution useful for this.)
(A) $P\{W(t)=0$ for some $2 \leq t \leq 3\}$.
(B) $P\{W(2)>W(1)>W(3)\}$.

Problem 2. Show that for any $t>0$ the random variable $M(t)-W(t)$ has the same distribution as the random variable $|W(t)|$. Hint: Begin by calculating

$$
P\{M(t) \geq a \text { and } W(t) \leq a-b\}
$$

for $a, b>0$. You may find the reflection principle helpful.
Problem 3. Let $T_{-}=\max \left\{t<1: W_{t}=0\right\}$ and $T_{+}=\min \left\{t>1: W_{t}=0\right\}$.
(A) Show that with probability one, $0<T_{-}<1<T_{+}$.
(B) Prove that T_{-}is not a stopping time, but that T_{+}is.
(C) Show that $P\left\{T_{+} \leq s\right\}=(2 / \pi) \arccos (1 / \sqrt{s})$ for all $s \geq 1$.
(D) Show that $P\left\{T_{+} \geq t\right.$ and $\left.T_{-} \leq s\right\}=(2 / \pi) \arcsin \sqrt{s / t}$ for all $0<s<1<t<\infty$.
(E) What is the density of T_{-} / T_{+}?

Problem 4. Killed Brownian Motion. Define T to be the first time that the Wiener process hits either $-1 / 2$ or $+1 / 2$. (Recall from class that $T<\infty$ almost surely.) For $-1 / 2<x, y<1 / 2$ and $t>0$ define

$$
\begin{equation*}
p_{t}^{*}(x, y)=P^{x}\left\{W_{t} \in d y \text { and } T>t\right\} \tag{1}
\end{equation*}
$$

(Here P^{x} is a probability measure under which W_{t} is a Brownian motion started at x.) This is a subprobability density which is bounded above by the Gaussian density with mean 0 and variance t. Use an iterated version of the Reflection Principle to derive the following infinite series expansion for the density $p_{t}^{*}(x, y)$:

$$
\begin{align*}
p_{t}^{*}(0, y) & =\sum_{k=-\infty}^{\infty}(-1)^{k} p_{t}\left((-1)^{k} y+k\right) \tag{2}\\
& =\sum_{k=-\infty}^{\infty}(-1)^{k} \exp \left\{-\left((-1)^{k} y+k\right)^{2} / 2 t\right\} / \sqrt{2 \pi t}
\end{align*}
$$

Optional Problem. Local Maxima of the Brownian Path. A continuous function $f(t)$ is said to have a local maximum at $t=s$ if there exists $\varepsilon>0$ such that

$$
f(t) \leq f(s) \quad \text { for all } t \in(s-\varepsilon, s+\varepsilon) .
$$

(A) Prove that for any fixed time $t 0$,

$$
P\left\{W_{t}=M_{t}\right\}=0 .
$$

Hint: Time reversal.
(B) For any two rational times $q_{0}<q_{1}$ let $M\left(q_{0}, q_{1}\right)=\max _{t \in\left[q_{0}, q_{1}\right]} W_{t}$ be the maximum of the Brownian path in the time interval $\left[q_{0}, q_{1}\right]$. Prove that with probability one,

$$
W_{q_{0}}<M\left(q_{0}, q_{1}\right) \quad \text { and } \quad W_{q_{1}}<M\left(q_{0}, q_{1}\right)
$$

for all pairs of rationals q_{0}, q_{1}.
(C) Conclude that with probability one, the set of times at which the Brownian path $W(t)$ has a local maximum is dense in $[0, \infty)$.
(D) Prove that with probability one, for any two pairs of rational times $q_{0}<q_{1}$ and $q_{2}<q_{3}$,

$$
M\left(q_{0}, q_{1}\right) \neq M\left(q_{2}, q_{3}\right)
$$

Hint: Strong Markov property.
(E) Prove that, with probability one, the set of local maxima of the Brownian path $W(t)$ is countable.

