STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 7 DUE WEDNESDAY NOVEMBER 23

Problem 1. Birth-Death Chains. A birth-death chain on the nonnegative integers \mathbb{Z}_{+}is an irreducible Markov chain on \mathbb{Z}_{+}for which only transitions to nearest neighbors are allowed. Thus, the nonzero transition probabilities are

$$
\begin{aligned}
p(x, x+1) & :=\beta_{x}>0 & & \text { for } x \geq 0 \\
p(x, x-1) & =\alpha_{x}=1-\beta_{x}>0 & & \text { for } x \geq 1 \\
p(0,0) & :=\alpha_{0}=1-\beta_{0}>0 . & &
\end{aligned}
$$

(A) Check that the function f defined by

$$
\begin{aligned}
f(0) & =0, \\
f(1) & =1, \\
f(m) & =\sum_{k=0}^{m-1} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}}
\end{aligned}
$$

is harmonic in $D=\{1,2,3, \ldots\}$. (Note: The value of the product when $k=0$ is 1 .)
(B) Solve the gambler's ruin problem for the birth-death chain, that is, if $T=T_{0, K}$ is the first time that the Markov chain visits either 0 or K, then for each $0 \leq k \leq K$ find

$$
P^{k}\left\{X_{T}=K\right\} .
$$

(C) Use the result of (B) to show that the Markov chain is recurrent if and only if

$$
\sum_{k=0}^{\infty} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}}=\infty .
$$

Problem 2. A Queueing Model: Consider a 1 -server queueing system in which jobs arrive at the occurrence times of a rate- λ Poisson process. The server can process two jobs simultaneously, and is active only when there are at least 2 jobs in the system (thus, if a job comes in when the queue is empty, it must wait until another job arrives before its service begins). When there are at least 2 jobs in the system, the server works on the two that arrived first; the time needed to finish these 2 jobs is exponential with parameter β. Let $X_{t}=$ number of jobs in the system at time t.
(A) What is the Q-matrix? Note: Before you go on to part (B), you might want to check with Si Tang to be sure you have the right answer.
(B) Show that if $\beta>2 \lambda$ then there is a stationary distribution, and find it.

Problem 3. Reversibility: Let $\mathbb{P}_{t}=\left(p_{t}(x, y)\right)_{x, y \in \mathscr{X}}$ be the transition semigroup of a continuoustime Markov chain $\left\{X_{t}\right\}_{t \geq 0}$ on a finite state space \mathscr{X}, and let $\mathbb{Q}=(q(x, y))_{x, y \in \mathscr{X}}$ be the associated $Q-$ matrix (see notes). Thus,

$$
\mathbb{P}_{t}=\exp \{t \mathbb{Q}\}
$$

where exp is the matrix exponential function. Say that the Markov chain is reversible if there exists a probability distribution $\left\{w_{x}\right\}_{x \in \mathscr{X}}$ on \mathscr{X} such that for any two states x, y,

$$
\begin{equation*}
w_{x} q(x, y)=w_{y} q(y, x) \tag{1}
\end{equation*}
$$

These equations are called the detailed balance equations.
(A) Prove that if the detailed balance equations hold, then for every $t \geq 0$ and every pair of states x, y,

$$
w_{x} p_{t}(x, y)=w_{y} p_{t}(y, x) .
$$

Hint: For each integer $m \geq 1$ denote by $a^{m}(x, y)$ the x, y entry of the matrix \mathbb{Q}^{m}. Show (by induction on m) that for every $m \geq 1$,

$$
w_{x} a^{m}(x, y)=w_{y} a^{m}(y, x) .
$$

Then use the matrix equation

$$
\mathbb{P}_{t}=\exp \{t \mathbb{Q}\}=\sum_{m=0}^{\infty} \frac{t^{m} \mathbb{Q}^{m}}{m!}
$$

(B) Prove that if the detailed balance equations hold, then the probability distribution $\left\{w_{x}\right\}_{x \in \mathscr{X}}$ on \mathscr{X} is a stationary distribution.
(C) A continuous-time Markov chain on a finite interval $\mathscr{X}=\{0,1,2, \ldots, K\}$ is said to be a birth-and-death chain if its $Q-$ matrix is such that

$$
\begin{aligned}
q(x, x+1)>0 & \text { for all } 0 \leq x<K ; \\
q(x, x-1)>0 & \text { for all } 0<x \leq K ; \text { and } \\
q(x, y)=0 & \text { otherwise. }
\end{aligned}
$$

Prove that every birth-and-death chain on a finite interval $\mathscr{X}=\{0,1,2, \ldots, K\}$ is reversible, and write a formula for the stationary distribution w.

Problem 4. Yule Process: The Yule process with rate parameter $\beta>0$ is the continuous-time Markov chain on the set $\mathscr{X}=\mathbb{N}$ of positive integers with $Q-$ matrix

$$
\begin{gathered}
q(x, x+1)=\beta x \quad \text { for all } x \geq 1, \\
q(x, y)=0 \quad \text { otherwise } .
\end{gathered}
$$

(A) Verify that the transition probabilities are given by the following formula:

$$
p_{t}(j, k)=\binom{k-1}{j-1} e^{-j \beta t}\left(1-e^{-\beta t}\right)^{k} .
$$

Hint: Check that this satisfies the Kolmogorov backward equations.
(B) The state X_{t} of a Yule process can be viewed as the size of a branching population in which individuals wait exponential-1 times and then fission, producing 1 new particle at each fission event. For any $t \geq s>0$, let $N(t ; s)$ be the number of individuals in the population that were born after time $t-s$. Find the distribution of $N(t ; s)$, assuming that $X_{0}=1$ (i.e., that the population starts with just one individual).
(C) Let X_{t} and Y_{t} be independent Yule processes, both with rate parameter $\beta>0$, and with initial states $X_{0}=x$ and $Y_{0}=y$. Show that $Z_{t}=X_{t}+Y_{t}$ is a Yule process with rate parameter $\beta>0$ and initial state $Z_{0}=x+y$.
(D) Use the results of (A) and (C) to conclude that the conditional distribution of X_{t} given that $Z_{t}=N$ is a hypergeometric distribution. (You figure out the parameters!)

