STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 7 DUE WEDNESDAY NOVEMBER 23

Problem 1. *Birth-Death Chains.* A *birth-death* chain on the nonnegative integers \mathbb{Z}_+ is an irreducible Markov chain on \mathbb{Z}_+ for which only transitions to nearest neighbors are allowed. Thus, the nonzero transition probabilities are

$$p(x, x+1) := \beta_x > 0 \qquad \text{for } x \ge 0$$

$$p(x, x-1) := \alpha_x = 1 - \beta_x > 0 \qquad \text{for } x \ge 1$$

$$p(0, 0) := \alpha_0 = 1 - \beta_0 > 0.$$

(A) Check that the function f defined by

$$f(0) = 0,$$

$$f(1) = 1,$$

$$f(m) = \sum_{k=0}^{m-1} \prod_{j=1}^{k} \frac{\alpha_{j}}{\beta_{j}}$$

is harmonic in $D = \{1, 2, 3, ...\}$. (Note: The value of the product when k = 0 is 1.)

(B) Solve the gambler's ruin problem for the birth-death chain, that is, if $T = T_{0,K}$ is the first time that the Markov chain visits either 0 or *K*, then for each $0 \le k \le K$ find

$$P^k \{ X_T = K \}$$

(C) Use the result of (B) to show that the Markov chain is recurrent if and only if

$$\sum_{k=0}^{\infty} \prod_{j=1}^{k} \frac{\alpha_j}{\beta_j} = \infty.$$

Problem 2. A Queueing Model: Consider a 1-server queueing system in which jobs arrive at the occurrence times of a rate— λ Poisson process. The server can process two jobs simultaneously, and is active only when there are at least 2 jobs in the system (thus, if a job comes in when the queue is empty, it must wait until another job arrives before its service begins). When there are at least 2 jobs in the system, the server works on the two that arrived first; the time needed to finish these 2 jobs is exponential with parameter β . Let X_t =number of jobs in the system at time t.

(A) What is the *Q*—matrix? NOTE: Before you go on to part (B), you might want to check with Si Tang to be sure you have the right answer.

(B) Show that if $\beta > 2\lambda$ then there is a stationary distribution, and find it.

Problem 3. Reversibility: Let $\mathbb{P}_t = (p_t(x, y))_{x, y \in \mathcal{X}}$ be the transition semigroup of a continuoustime Markov chain $\{X_t\}_{t \ge 0}$ on a finite state space \mathcal{X} , and let $\mathbb{Q} = (q(x, y))_{x, y \in \mathcal{X}}$ be the associated Q-matrix (see notes). Thus,

$$\mathbb{P}_t = \exp\{t\mathbb{Q}\}$$

where exp is the matrix exponential function. Say that the Markov chain is *reversible* if there exists a probability distribution $\{w_x\}_{x\in\mathscr{X}}$ on \mathscr{X} such that for any two states x, y,

(1) $w_x q(x, y) = w_y q(y, x).$

These equations are called the *detailed balance equations*.

(A) Prove that if the detailed balance equations hold, then for every $t \ge 0$ and every pair of states x, y,

$$w_x p_t(x, y) = w_y p_t(y, x).$$

HINT: For each integer $m \ge 1$ denote by $a^m(x, y)$ the x, y entry of the matrix \mathbb{Q}^m . Show (by induction on *m*) that for every $m \ge 1$,

$$w_x a^m(x, y) = w_y a^m(y, x).$$

Then use the matrix equation

$$\mathbb{P}_t = \exp\{t\mathbb{Q}\} = \sum_{m=0}^{\infty} \frac{t^m \mathbb{Q}^m}{m!}.$$

(B) Prove that if the detailed balance equations hold, then the probability distribution $\{w_x\}_{x \in \mathcal{X}}$ on \mathcal{X} is a stationary distribution.

(C) A continuous-time Markov chain on a finite interval $\mathcal{X} = \{0, 1, 2, ..., K\}$ is said to be a *birth-and-death* chain if its *Q*-matrix is such that

$$q(x, x+1) > 0$$
 for all $0 \le x < K$;
 $q(x, x-1) > 0$ for all $0 < x \le K$; and
 $q(x, y) = 0$ otherwise.

Prove that every birth-and-death chain on a finite interval $\mathscr{X} = \{0, 1, 2, ..., K\}$ is reversible, and write a formula for the stationary distribution *w*.

Problem 4. Yule Process: The *Yule process* with rate parameter $\beta > 0$ is the continuous-time Markov chain on the set $\mathcal{X} = \mathbb{N}$ of positive integers with *Q*-matrix

$$q(x, x+1) = \beta x$$
 for all $x \ge 1$,
 $q(x, y) = 0$ otherwise.

(A) Verify that the transition probabilities are given by the following formula:

$$p_t(j,k) = \binom{k-1}{j-1} e^{-j\beta t} (1-e^{-\beta t})^k.$$

HINT: Check that this satisfies the Kolmogorov backward equations.

(B) The state X_t of a Yule process can be viewed as the size of a branching population in which individuals wait exponential-1 times and then fission, producing 1 new particle at each fission event. For any $t \ge s > 0$, let N(t; s) be the number of individuals in the population that were born after time t - s. Find the distribution of N(t; s), assuming that $X_0 = 1$ (i.e., that the population starts with just one individual).

(C) Let X_t and Y_t be *independent* Yule processes, both with rate parameter $\beta > 0$, and with initial states $X_0 = x$ and $Y_0 = y$. Show that $Z_t = X_t + Y_t$ is a Yule process with rate parameter $\beta > 0$ and initial state $Z_0 = x + y$.

(D) Use the results of (A) and (C) to conclude that the conditional distribution of X_t given that $Z_t = N$ is a hypergeometric distribution. (You figure out the parameters!)