STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 5 DUE WEDNESDAY NOVEMBER 2

Problem 1. Symmetries. Let $\mathbb{P}=(p(i, j))$ be an irreducible transition probability matrix on a finite state space \mathscr{Y}. An automorphism (or symmetry) of the transition kernel \mathbb{P} (or, more informally, of the the Markov chain with this transition kernel) is a one-to-one mapping T : $\mathscr{Y} \rightarrow \mathscr{Y}$ such that for every pair $i, j \in \mathscr{Y}$,

$$
p(i, j)=p(T(i), T(j))
$$

Let π be the unique stationary probability distribution for the transition probability matrix \mathbb{P}. (Recall that the stationary distribution is unique if \mathbb{P} is irreducible.) Suppose that $T: \mathscr{Y} \rightarrow \mathscr{Y}$ is an automorphism of \mathbb{P}.
(A) Show that for every $i \in \mathbb{Y}$,

$$
\pi(i)=\pi(T(i))
$$

(B) Conclude that if for every pair i, j of states there is a symmetry π such that $\pi(i)=j$ then the stationary distribution must be the uniform distribution on \mathscr{Y}.

Problem 2. Top-to-random shuffling. Consider a deck of M cards, labeled $1,2,3, \ldots, M$. In top-to-random shuffling, at each step n the top card of the deck is removed and then inserted at a random position in the deck. For example: if the current state of the deck is $(3,4,1,2)$ then at the next step the possible states are

$$
\begin{equation*}
(3,4,1,2) \tag{4,3,1,2}
\end{equation*}
$$

each of these has probability $\frac{1}{4}$. At each time $n=0,1,2, \ldots$ the state of the system is one of the M ! permutations of the integers $1,2,3, \ldots, M$, so the state space is the set \mathscr{S}_{M} of all permutations.
(A) Show that this Markov chain is irreducible and aperiodic.
(B) Show that the uniform distribution on \mathscr{S}_{M} is a stationary distribution.

Problem 3. Reversibility. A Markov chain on the state space \mathscr{X} with transition probabilities $p(x, y)$ is said to be reversible if there is a positive function $w: \mathscr{X} \rightarrow(0, \infty)$ such that for any two states $x, y \in \mathscr{X}$,

$$
w(x) p(x, y)=w(y) p(y, x)
$$

These equations are called the detailed balance conditions.
(A) Show that if the Markov chain is irreducible then the weight function w is unique up to multiplication by a scalar. Hint: First show that if the detailed balance equations hold, then for any $n \geq 1$ and $x, y \in \mathscr{X}$,

$$
w(x) p_{n}(x, y)=w(y) p_{n}(y, x)
$$

(B) Show that if the detailed balance equations hold for a weight function w such that $\sum_{x \in \mathscr{X}} w(x)=$ 1 then w is a stationary distribution for the Markov chain.
(C) Show that an irreducible Markov chain on a finite or countable state space \mathscr{X} is reversible if and only if for every finite cycle of states $x_{0}, x_{1}, x_{2}, \ldots, x_{n}=x_{0}$,

$$
\prod_{i=0}^{n-1} p\left(x_{i}, x_{i+1}\right)=\prod_{i=0}^{n-1} p\left(x_{i+1}, x_{i}\right)
$$

(D) Consider the p, q random walk on the discrete circle \mathbb{Z}_{m} (i.e., the Markov chain that moves one step clockwise with probability p and one step counter-clockwise with probability $q=$ $1-p$). Is this Markov chain reversible?

Problem 4. Coupling and Total Variation. Let μ and v be two probability distributions on a finite set \mathscr{X}. A coupling of μ and v is a probability distribution λ on the Cartesian product $\mathscr{X} \times \mathscr{X}$ whose marginal distributions are μ and v, that is,

$$
\begin{aligned}
& \mu(x)=\sum_{y \in \mathscr{X}} \lambda(x, y) \text { and } \\
& \nu(y)=\sum_{x \in \mathscr{X}} \lambda(x, y) .
\end{aligned}
$$

Define a maximal coupling to be a coupling that assigns the largest possible probability to the diagonal

$$
(\mathscr{X} \times \mathscr{X})_{\text {diagonal }}:=\{(x, y) \in \mathscr{X} \times \mathscr{X}: x=y\} .
$$

Prove that for any pair μ, v of probability distributions on \mathscr{X} there is a maximal coupling λ, and

$$
\lambda(\mathscr{X} \times \mathscr{X})-\lambda(\mathscr{X} \times \mathscr{X})_{\text {diagonal }}=\|\mu-\nu\|_{T V} .
$$

Problem 5. A Queueing Model: This is a discrete-time Markov chain designed to model a queueing system with a single server. During each time period, several job requests are made of the server. The server can complete just one job in a single time period, so excess requests must be held in a queue to await processing during a later time period. Assume that the numbers of requests $Y_{1}, Y_{2}, Y_{3}, \ldots$ during time periods $1,2,3, \ldots$ are independent, identically distributed random variables with common distribution

$$
P\left\{Y_{i}=k\right\}=a_{k} \quad \text { for } k=0,1,2, \ldots
$$

Assume that $a_{0}>0$ that $a_{0}<1$. The state of the system at time n is just the number X_{n} of requests in the queue at the end of the nth time period. Thus, the transition probability matrix
is:

$$
\mathbb{P}=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
0 & a_{0} & a_{1} & a_{2} & \cdots \\
0 & 0 & a_{0} & a_{1} & \cdots \\
\cdots & & & &
\end{array}\right)
$$

Observe that the first row breaks the pattern of the rest of the matrix. The reason is that, whenever the current state of the system is 0 , the server is idle, and completes no jobs during the next time period; but whenever the current state is ≥ 1, the server will complete 1 job in the next time period.
Assume that the mean number $\mu=\sum_{k=0}^{\infty} k a_{k}$ of new requests per time period is <1. The following 3 exercises will show that under this assumption the Markov chain has a stationary probability distribution $\pi_{m}=\pi(m)$.
(A) Let $\pi_{m}=\pi(m)$ be the stationary distribution of the Markov chain, and define the generating functions

$$
G(z)=\sum_{m=0}^{\infty} \pi_{m} z^{m} \quad \text { and } \quad A(z)=\sum_{m=0}^{\infty} a_{m} z^{m} .
$$

Derive a functional equation relating $G(z)$ and $A(z)$. Hint: Begin writing the defining equations for a stationary distribution for $\pi_{0}, \pi_{1}, \pi_{2, \ldots}$. Multiply these by $z^{0}, z^{1}, z^{2}, \ldots$, sum, and simplify. When I tried this myself, I obtained (I think)

$$
\begin{equation*}
G(z)=A(z)\left\{\pi_{0}+\left(G(z)-\pi_{0}\right) / z\right\} . \tag{1}
\end{equation*}
$$

(B) Consider the special case where $a_{m}=q p^{m}$ for some $0<p<1$ and $q=1-p$. Use the results of (c) and (d) to give exact formulas for the steady-state probabilities π_{m}.
(C) Show that, when $\mu<1$ and with $\pi_{0}=(1-\mu)$, the equation (??), when solved for $G(z)$, defines a function that is a probability generating function. The functional equation then implies (why?) that the coefficients π_{m} of $G(z)$ define a stationary distribution.

