
STATISTICS 312: STOCHASTIC PROCESSES
HOMEWORK ASSIGNMENT 5

DUE WEDNESDAY NOVEMBER 2

Problem 1. Symmetries. Let P = (p (i , j )) be an irreducible transition probability matrix on
a finite state space Y . An automorphism (or symmetry) of the transition kernel P (or, more
informally, of the the Markov chain with this transition kernel) is a one-to-one mapping T :
Y →Y such that for every pair i , j ∈Y ,

p (i , j ) = p (T (i ), T ( j )).

Let π be the unique stationary probability distribution for the transition probability matrix P.
(Recall that the stationary distribution is unique if P is irreducible.) Suppose that T :Y →Y is
an automorphism of P.

(A) Show that for every i ∈Y,
π(i ) =π(T (i )).

(B) Conclude that if for every pair i , j of states there is a symmetryπ such thatπ(i ) = j then the
stationary distribution must be the uniform distribution onY .

Problem 2. Top-to-random shuffling. Consider a deck of M cards, labeled 1, 2, 3, . . . , M . In
top-to-random shuffling, at each step n the top card of the deck is removed and then inserted
at a random position in the deck. For example: if the current state of the deck is (3, 4, 1, 2) then
at the next step the possible states are

(3, 4, 1, 2),

(4, 3, 1, 2),

(4, 1, 3, 2),

(4, 1, 2, 3);

each of these has probability 1
4 . At each time n = 0, 1, 2, . . . the state of the system is one of the M !

permutations of the integers 1, 2, 3, . . . , M , so the state space is the setSM of all permutations.

(A) Show that this Markov chain is irreducible and aperiodic.
(B) Show that the uniform distribution onSM is a stationary distribution.

Problem 3. Reversibility. A Markov chain on the state space X with transition probabilities
p (x , y ) is said to be reversible if there is a positive function w : X → (0,∞) such that for any
two states x , y ∈X ,

w (x )p (x , y ) =w (y )p (y , x )
These equations are called the detailed balance conditions.
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(A) Show that if the Markov chain is irreducible then the weight function w is unique up to
multiplication by a scalar. HINT: First show that if the detailed balance equations hold, then
for any n ≥ 1 and x , y ∈X ,

w (x )pn (x , y ) =w (y )pn (y , x ).

(B) Show that if the detailed balance equations hold for a weight function w such that
∑

x∈X w (x ) =
1 then w is a stationary distribution for the Markov chain.

(C) Show that an irreducible Markov chain on a finite or countable state spaceX is reversible
if and only if for every finite cycle of states x0, x1, x2, . . . , xn = x0,

n−1
∏

i=0

p (xi , xi+1) =
n−1
∏

i=0

p (xi+1, xi ).

(D) Consider the p , q random walk on the discrete circle Zm (i.e., the Markov chain that moves
one step clockwise with probability p and one step counter-clockwise with probability q =
1−p ). Is this Markov chain reversible?

Problem 4. Coupling and Total Variation. Let µ and ν be two probability distributions on a
finite set X . A coupling of µ and ν is a probability distribution λ on the Cartesian product
X ×X whose marginal distributions are µ and ν, that is,

µ(x ) =
∑

y ∈X
λ(x , y ) and

ν(y ) =
∑

x∈X
λ(x , y ).

Define a maximal coupling to be a coupling that assigns the largest possible probability to the
diagonal

(X ×X )diagonal := {(x , y ) ∈X ×X : x = y }.

Prove that for any pairµ,ν of probability distributions onX there is a maximal couplingλ, and

λ(X ×X )−λ(X ×X )diagonal = ‖µ−ν‖T V .

Problem 5. A Queueing Model: This is a discrete-time Markov chain designed to model a
queueing system with a single server. During each time period, several job requests are made of
the server. The server can complete just one job in a single time period, so excess requests must
be held in a queue to await processing during a later time period. Assume that the numbers
of requests Y1, Y2, Y3, . . . during time periods 1, 2, 3, . . . are independent, identically distributed
random variables with common distribution

P {Yi = k}= ak for k = 0, 1, 2, . . .

Assume that a0 > 0 that a0 < 1. The state of the system at time n is just the number Xn of
requests in the queue at the end of the nth time period. Thus, the transition probability matrix



is:

P=











a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
· · ·











Observe that the first row breaks the pattern of the rest of the matrix. The reason is that, when-
ever the current state of the system is 0, the server is idle, and completes no jobs during the
next time period; but whenever the current state is ≥ 1, the server will complete 1 job in the
next time period.

Assume that the mean number µ =
∑∞

k=0 k ak of new requests per time period is < 1. The
following 3 exercises will show that under this assumption the Markov chain has a stationary
probability distribution πm =π(m ).

(A) Letπm =π(m )be the stationary distribution of the Markov chain, and define the generating
functions

G (z ) =
∞
∑

m=0

πm z m and A(z ) =
∞
∑

m=0

am z m .

Derive a functional equation relating G (z )and A(z ). HINT: Begin writing the defining equations
for a stationary distribution for π0,π1,π2,.... Multiply these by z 0, z 1, z 2, . . . , sum, and simplify.
When I tried this myself, I obtained (I think)

(1) G (z ) = A(z ){π0+ (G (z )−π0)/z }.

(B) Consider the special case where am = q p m for some 0< p < 1 and q = 1−p . Use the results
of (c) and (d) to give exact formulas for the steady-state probabilities πm .

(C) Show that, when µ < 1 and with π0 = (1−µ), the equation (??), when solved for G (z ), de-
fines a function that is a probability generating function. The functional equation then implies
(why?) that the coefficients πm of G (z ) define a stationary distribution.


