STATISTICS 312: STOCHASTIC PROCESSES
HOMEWORK ASSIGNMENT 5
DUE WEDNESDAY NOVEMBER 2

Problem 1. Symmetries. Let P = (p(i, j)) be an irreducible transition probability matrix on
a finite state space %. An automorphism (or symmetry) of the transition kernel P (or, more
informally, of the the Markov chain with this transition kernel) is a one-to-one mapping T :
% — % such that for every pair i, j € %,

p(i, j)=p(T(), T(j)).
Let 7 be the unique stationary probability distribution for the transition probability matrix P.
(Recall that the stationary distribution is unique if P is irreducible.) Suppose that T : % — % is
an automorphism of P.

(A) Show that for every i €Y,

(B) Conclude that if for every pair i, j of states there is a symmetry 7 such that 7(i) = j then the
stationary distribution must be the uniform distribution on %.

Problem 2. Top-to-random shuffling. Consider a deck of M cards, labeled 1,2,3,...,M. In
top-to-random shuffling, at each step n the top card of the deck is removed and then inserted
at arandom position in the deck. For example: if the current state of the deck is (3,4, 1,2) then

at the next step the possible states are

(3,4,1,2),
(4,3,1,2),
(4,1,3,2),
(4,1,2,3);

each of these has probability %. Ateachtimen =0,1,2,... the state of the system is one of the M!
permutations of the integers 1,2,3,..., M, so the state space is the set %), of all permutations.

(A) Show that this Markov chain is irreducible and aperiodic.
(B) Show that the uniform distribution on ., is a stationary distribution.

Problem 3. Reversibility. A Markov chain on the state space 2 with transition probabilities
p(x,y)is said to be reversible if there is a positive function w : Z — (0, o) such that for any
two states x,y € &,
w(x)p(x,y)=w(y)p(y, x)
These equations are called the detailed balance conditions.
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(A) Show that if the Markov chain is irreducible then the weight function w is unique up to
multiplication by a scalar. HINT: First show that if the detailed balance equations hold, then
foranyn>1land x,y €%,

w(x)pn(xr y) = w(y)pn(y» Xx).

(B) Show that if the detailed balance equations hold for aweight function w such that >, w(x)=
1 then w is a stationary distribution for the Markov chain.

(C) Show that an irreducible Markov chain on a finite or countable state space % is reversible
if and only if for every finite cycle of states xy, x1, Xy, ..., X, = Xo,

n—1 n

-1
l_ll?(xi» Xiy1)= ]_I p(Xiy1, X;).
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(D) Consider the p, g random walk on the discrete circle Z,,, (i.e., the Markov chain that moves
one step clockwise with probability p and one step counter-clockwise with probability g =
1—p). Is this Markov chain reversible?

Problem 4. Coupling and Total Variation. Let y and v be two probability distributions on a
finite set . A coupling of u and v is a probability distribution A on the Cartesian product
X x X whose marginal distributions are u and v, that is,

px)= D Alx,y) and

VEX

Wy)= > Alx,y).
XEX
Define a maximal coupling to be a coupling that assigns the largest possible probability to the
diagonal
©a ><gy)diagonal ={x,y)eX x X 1 x =y}

Prove that for any pair u, v of probability distributions on & there is a maximal coupling A, and
ME X X)—=AX % e%')diagonal = ”.u_ Yry.

Problem 5. A Queueing Model: This is a discrete-time Markov chain designed to model a
queueing system with a single server. During each time period, several job requests are made of
the server. The server can complete just one job in a single time period, so excess requests must
be held in a queue to await processing during a later time period. Assume that the numbers
of requests Y}, Y5, ¥3,... during time periods 1,2, 3,... are independent, identically distributed
random variables with common distribution

P{Y;=k}=ay fork=0,1,2,...

Assume that gy > 0 that a; < 1. The state of the system at time 7 is just the number X,, of
requests in the queue at the end of the nth time period. Thus, the transition probability matrix



is:
ap a, a4 das
ayg d; ap ds
P=| 0 ayg a; dadp
0 0 ay da;

Observe that the first row breaks the pattern of the rest of the matrix. The reason is that, when-
ever the current state of the system is 0, the server is idle, and completes no jobs during the
next time period; but whenever the current state is > 1, the server will complete 1 job in the
next time period.

Assume that the mean number y = Z,;“;O kaj of new requests per time period is < 1. The
following 3 exercises will show that under this assumption the Markov chain has a stationary
probability distribution 7, = (m).

(A) Let 7,,, = m(m) be the stationary distribution of the Markov chain, and define the generating
functions

G(z)zanzm and A(z)zZamzm.
m=0 m=0

Derive a functional equation relating G(z) and A(z). HINT: Begin writing the defining equations
for a stationary distribution for 7y, 7, 7, . Multiply these by z°, z!, z2,..., sum, and simplify.
When I tried this myself, I obtained (I think)

M G(z)=Alz){mo+(G(z)—mo)/ 2}
(B) Consider the special case where a,, = gp™ for some 0 < p <1 and g =1—p. Use the results
of (c) and (d) to give exact formulas for the steady-state probabilities 7 ,,.

(C) Show that, when u < 1 and with 7y = (1 — ), the equation (22), when solved for G(z), de-
fines a function that is a probability generating function. The functional equation then implies
(why?) that the coefficients 7, of G(z) define a stationary distribution.



