STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 4 DUE MONDAY OCTOBER 24

Problem 1. Residual Lifetime Distribution. Let $\left\{S_{n}\right\}_{n \geq 0}$ be a discrete renewal process with interoccurrence time distribution $\left\{p_{k}\right\}_{k \geq 1}$. Thus,

$$
S_{n}=\sum_{j=1}^{n} X_{j}
$$

where X_{1}, X_{2}, \ldots are independent, identically distributed with distribution $P\left\{X_{1}=k\right\}=p_{k}$. Assume that the distribution ($p_{k k \geq 1}$) satisfies the hypotheses of the Erdös-Feller-Pollard theorem. For each $m=0,1,2, \ldots$ let $N(m)=$ smallest n such that $S_{n}>m$, and set

$$
\begin{aligned}
& R_{m}=S_{N(m)}-m \quad \text { and } \\
& A_{m}=m-S_{N(m)-1}
\end{aligned}
$$

These random variables are called the residual lifetime and the age at time m. This problem concerns their distributions.
(A) Use the Erdös-Feller-Pollard theorem to show that if $E X_{1}=\sum_{k=1}^{\infty} k p_{k}=\mu<\infty$ then the residual lifetime random variable R_{m} has a distribution that converges as $m \rightarrow \infty$, that is, show that for each $k \geq 1$ the limit

$$
\lim _{m \rightarrow \infty} P\left\{R_{m}=k\right\}:=g_{k}
$$

exists, and identify the limit distribution $\left(g_{k}\right)_{k \geq 1}$.
(B) Show that if $E X_{1}=\sum_{k=1}^{\infty} k p_{k}=\mu<\infty$ then for each $k \geq 1$ and each $\ell \geq 0$,

$$
\lim _{m \rightarrow \infty} P\left\{R_{m}=k \text { and } A_{m}=\ell\right\}:=h(k, \ell)
$$

exists, and identify $h(k, \ell)$.
(C) Fix an integer $k \geq 1$, and set $v(m)=P\left\{R_{m}=k\right\}$. Show that the sequence $v(m)$ satisfies a renewal equation

$$
\nu(m)=b(m)+\sum_{n=1}^{m} p_{n} v(m-n)
$$

and identify the sequence $b(m)$. Hint: Condition on the first step of the random walk.
(D) Let $V(z), B(z)$, and $F(z)$ be the generating functions of the sequences $\left(v_{m}\right)_{m \geq 0},\left(b_{k}\right)_{k \geq 1}$, and $\left(p_{n}\right)_{n \geq 1}$, respectively. Find an algebraic equation that exhibits $V(z)$ as a rational expression in the other two functions $B(z)$ and $F(z)$.
(E) Consider the special case where $p_{1}=p_{2}=\frac{1}{2}$. Use the result of part (C) to find an exact formula for $P\left(R_{m}=k\right)$.

Problem 2. The Fibonacci Sequence: The Fibonacci sequence - probably discovered in India over 1000 years ago, but introduced to Western mathematics by Leonardo of Pisa, known as Fibonacci- is defined by the inductive rule

$$
\begin{align*}
a_{1} & =a_{2}=1 ; \tag{1}\\
a_{n+2} & =a_{n+1}+a_{n} .
\end{align*}
$$

Thus, the sequence begins $1,1,2,3,5,8,13,21, \cdots$. The Fibonacci numbers occur in unexpected places, for instance (see Wikipedia entry for Conifer cone)

The members of the pine family (pines, spruces, firs, cedars, larches, etc.) have cones that are imbricate with scales overlapping each other like fish scales. These are the "archetypal" cone. The scales are spirally arranged in Fibonacci number ratios.

Define

$$
A(z):=\sum_{n=1}^{\infty} a_{n} z^{n} .
$$

Use the convolution equation (1) to obtain a quadratic functional equation for $A(z)$. Solve this equation, and then use the method of partial fractions to obtain an exact formula for the nth Fibonacci number. Use this to show that for a suitable constant C,

$$
a_{n} \sim C \theta^{n}
$$

where θ is the golden ratio.
Problem 3. A Queueing Model. At each time $n=1,2,3, \ldots$ a random number V_{n} of passengers arrive at a bus stop. Assume that the random variables V_{1}, V_{2}, \ldots are independent, identically distributed $\operatorname{Bernoulli}(p)$ for some value of $p \in(0,1)$. Buses arrive at the occurrence times of an arithmetic renewal process with interoccurrence time distribution $F=\left\{f_{k}\right\}_{k \geq 1}$. Whenever a bus arrives, all passengers at the stop board the bus and are then carted away. (Thus, each bus has infinite capacity.) Assume that the inter-arrival time distribution $F=\left\{f_{k}\right\}_{k \geq 1}$ satisfies the hypotheses of the Erdös-Feller-Pollard theorem.
(A) Let $Y_{n}=Y(n)$ be the number of passengers waiting at the bus stop at time n. (Note: Use the convention that at any time n that a bus arrives, $Y_{n}=0$.) Fix $k \geq 0$. Use the Erdös-Feller-Pollard theorem to show that

$$
\lim _{n \rightarrow \infty} P\{Y(n)=k\}:=g(k)
$$

exists. Identify the limit distribution $g(k)$ in terms of the distribution F and the arrival rate λ.
(B) What is the mean number of passengers waiting in steady state?
(C) What is the mean time, in steady state, that a passenger spends waiting for a bus to arrive?

