STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 3 DUE MONDAY OCTOBER 17

Problem 1. Let be a $p: q$ random walk on the integers \mathbb{Z} started at $S_{0}=0$, i.e., let

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

where the steps X_{i} are independent, identically distributed with common distribution

$$
P\left\{X_{i}=+1\right\}=p \quad \text { and } \quad P\left\{X_{i}=-1\right\}=q=1-p
$$

For each nonnegative integer m, define $\tau(m)$ to be the smallest $n \in \mathbb{N}$ such that $S_{n}=m$ (or $\tau(m)=\infty$ if there is no such n), and for any integers $A, B \geq 1$ define $T=T_{-A, B}$ to be the smallest $n \in \mathbb{N}$ such that $S_{n}=-A$ or $S_{n}=B$.
(A) Use the First Wald Identity and the Monotone Convergence Theorem to show that if $p>\frac{1}{2}$ then $E \tau(1)=1 /(p-q)=1 /(2 p-1)$.
(B) Use the Third Wald Identity with $e^{\theta}=q / p$ to calculate

$$
P\left\{S_{T}=B\right\}
$$

Problem 2. Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with the geometric distribution

$$
P\left\{X_{i}=k\right\}=(1-r) r^{k} \quad \text { for } k=0,1,2, \ldots
$$

for some fixed $0<r<1$, and let $S_{n}=\sum_{i=1}^{n} X_{i}$ be the random walk with steps X_{i}. For each integer $m=1,2,3, \ldots$ let T_{m} be the smallest integer n such that $S_{n} \geq m$.
(A) Show that for each $m=1,2, \ldots$ the overshoot random variable $S_{T_{m}}-m$ has the geometric distribution

$$
P\left\{S_{T_{m}}-m=k\right\}=(1-r) r^{k} \quad \text { for } k=0,1,2, \ldots
$$

(B) Calculate $E T_{m}$.
(C) For each $0<r<1$ and each $m=1,2, \ldots$, find the probability that at some time $n \geq 0$,

$$
S_{n}-n=-m
$$

Note: The form of the solution should change at $r=1 / 2$.

Problem 3. Let $S_{n}=\sum_{i=1}^{n} \xi_{i}$ be the random walk on the integers that at each step makes jumps of size +1 or +2 , with probabilities p and q, respectively. (That is, the increments ξ_{i} are independent, identically distributed random variables such that $P\left\{\xi_{i}=+1\right\}=p$ and $P\left\{\xi_{i}=+2\right\}=$ $q=1-p$.) For each integer $m \geq 0$, let $u(m)$ be the probability that $S_{n}=m$ for some $n \geq 1$. Find an explicit formula for $u(m)$, in two ways:
(A) Generating functions: Define $U(z)=\sum_{m=0}^{\infty} u(m) z^{m}$. Show that

$$
U(z)=\frac{1}{1-F(z)} \quad \text { where } \quad F(z)=p z+q z^{2}
$$

and then use the method of partial fraction decomposition to express $U(z)$ as the sum of two geometric series.
(B) Wald III: Define $\tau(m)=$ smallest n such that $S_{n} \geq m$. Use Wald III with the right choice of e^{θ}. Note: It is believed that the axioms of mathematics are consistent, so in principle your answers to (A) and (B) should be the same.

