STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 3 DUE MONDAY OCTOBER 17

Problem 1. Let be a p:q random walk on the integers \mathbb{Z} started at $S_0 = 0$, i.e., let

$$S_n = \sum_{i=1}^n X_i$$

where the steps X_i are independent, identically distributed with common distribution

$$P{X_i = +1} = p$$
 and $P{X_i = -1} = q = 1 - p$.

For each nonnegative integer *m*, define $\tau(m)$ to be the smallest $n \in \mathbb{N}$ such that $S_n = m$ (or $\tau(m) = \infty$ if there is no such *n*), and for any integers $A, B \ge 1$ define $T = T_{-A,B}$ to be the smallest $n \in \mathbb{N}$ such that $S_n = -A$ or $S_n = B$.

(A) Use the First Wald Identity and the Monotone Convergence Theorem to show that if $p > \frac{1}{2}$ then $E \tau(1) = 1/(p-q) = 1/(2p-1)$.

(B) Use the Third Wald Identity with $e^{\theta} = q/p$ to calculate

$$P\{S_T = B\}.$$

Problem 2. Let X_1, X_2, \ldots be independent, identically distributed random variables with the geometric distribution

$$P\{X_i = k\} = (1-r)r^k$$
 for $k = 0, 1, 2, ...$

for some fixed 0 < r < 1, and let $S_n = \sum_{i=1}^n X_i$ be the random walk with steps X_i . For each integer m = 1, 2, 3, ... let T_m be the smallest integer n such that $S_n \ge m$.

(A) Show that for each m = 1, 2, ... the *overshoot* random variable $S_{T_m} - m$ has the geometric distribution

$$P\{S_{T_m} - m = k\} = (1 - r)r^k$$
 for $k = 0, 1, 2, ...$

(B) Calculate ET_m .

(C) For each 0 < r < 1 and each m = 1, 2, ..., find the probability that at some time $n \ge 0$,

$$S_n - n = -m$$
.

NOTE: The form of the solution should change at r = 1/2.

Problem 3. Let $S_n = \sum_{i=1}^n \xi_i$ be the random walk on the integers that at each step makes jumps of size +1 or +2, with probabilities p and q, respectively. (That is, the increments ξ_i are independent, identically distributed random variables such that $P\{\xi_i = +1\} = p$ and $P\{\xi_i = +2\} = q = 1-p$.) For each integer $m \ge 0$, let u(m) be the probability that $S_n = m$ for some $n \ge 1$. Find an explicit formula for u(m), in two ways:

(A) Generating functions: Define $U(z) = \sum_{m=0}^{\infty} u(m) z^m$. Show that

$$U(z) = \frac{1}{1 - F(z)}$$
 where $F(z) = pz + qz^2$,

and then use the method of partial fraction decomposition to express U(z) as the sum of two geometric series.

(B) Wald III: Define $\tau(m)$ =smallest n such that $S_n \ge m$. Use Wald III with the right choice of e^{θ} . NOTE: It is believed that the axioms of mathematics are consistent, so in principle your answers to (A) and (B) should be the same.