STATISTICS 312: STOCHASTIC PROCESSES HOMEWORK ASSIGNMENT 2 DUE MONDAY OCTOBER 10

Problem 1. Let $\left\{N_{J}\right\}$ be a Poisson point process in \mathbb{R}^{2} with intensity function $\lambda(x, y)=h(y)$ that depends only on the y-coordinate. Let N_{R} be the number of points in the rectangle $R=$ $[0, T] \times[0, A]$, and denote by $\left(X_{i}, Y_{i}\right)$, where $i=1,2, \ldots, N_{R}$, the locations of the occurrences in the region R.
(A) Show that the conditional distribution of the values $Y_{1}, Y_{2}, \ldots, Y_{n}$ given the event $N_{R}=n$ is the same as the distribution of n points sampled independently from the density

$$
f_{A}(y):=\frac{h(y)}{\iint_{R} h(y) d x d y} .
$$

(B) Show that the characteristic function of $\sum_{i=1}^{N_{R}} Y_{i}$ is

$$
E \exp \left\{i \theta \sum_{i=1}^{N_{R}} Y_{i}\right\}=\exp \left\{-\alpha_{R}+\alpha_{R} \varphi(\theta)\right\}
$$

where

$$
\alpha_{R}=\iint_{R} h(y) d x d y \text { and } \varphi(\theta)=\int_{0}^{A} e^{i \theta y} f_{A}(y) d y .
$$

Problem 2. Asymmetric Random Walk. This problem is concerned with the $p-q$ random walk on the integers, that is, the nearest neighbor random walk in which jumps to the right occur with probability p and jumps to the left with probability $q=1-p$. Let S_{n} be the position after n steps; then

$$
\begin{equation*}
S_{n}=x+\sum_{i=1}^{n} \xi_{i} \tag{1}
\end{equation*}
$$

where ξ_{1}, ξ_{2}, \ldots are i.i.d. Rademacher- p, that is,

$$
\begin{aligned}
& P\left\{\xi_{j}=+1\right\}=p, \\
& P\left\{\xi_{j}=-1\right\}=q,
\end{aligned}
$$

Dependence of probabilities and expectations on the initial state x will be indicated by putting a superscript x on the probability and expectation operators P and E. Fix a positive integer M
and an arbitrary integer a and let

$$
\begin{equation*}
\tau=\tau_{[0, M]}=\inf \left\{n: S_{n}=0 \text { or } M\right\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
T_{a}=\inf \left\{n: S_{n}=a\right\} . \tag{3}
\end{equation*}
$$

(A) Write and solve a difference equation for $u(x):=P^{x}\left\{S_{\tau}=M\right\}$.
(B) Write and solve a difference equation for the expected time of exit $v(x)=E^{x} \tau$.

Problem 3. Ballot Problem. An election is held with two candidates A and B. A total of N voters cast ballots; candidate A receives N_{A} votes and candidate B receives $N_{B}=N-N_{A}$ votes. Assume that $N_{A} \geq N_{B}$. Suppose the votes are drawn from the ballot box in random order and the votes are tallied one at a time. What is the probability that at any stage of the tally candidate B is ahead (by at least one vote) in the count? Solve this using a reflection argument, as follows:
(A) What is the total number $\mathscr{E}\left(N_{A}, N_{B}\right)$ of random orderings of the ballots, subject to the constraint that N_{A} are labeled A and $N_{B}=N-N_{A}$ are labeled B ?
(B) Let S_{n}^{A} and S_{n}^{B} be the tallies for A and B after n ballots have been observed. Consider the orderings in which at some stage candidate B pulls ahead. There must be a first time $\tau \geq 1$ at which $S_{\tau}^{B}-S_{\tau}^{A}=1$. Suppose that at this time all of the remaining ballots are flipped, that is, ballots for A are relabeled B and ballots for B are relabeled A. Show that the election would then result in (I think!) $N_{A}+1$ votes for candidate B and $N_{B}-1$ for candidate A.
(C) Show that the relabeling procedure in part (B) sets up a one-to-one correspondence between (a) the ballot orderings in which at some stage candidate B pulls ahead but ends up with only N_{A} votes and (b) the ballot orderings in which candidate B wins with $N_{A}+1$ votes. Hint: The procedure in part (B) is reversible.
(D) Conclude that the number of ballot orderings in which candidate A receives N_{A} votes, candidate B receives N_{B} votes, and candidate B never leads in the count, is equal to

$$
\mathscr{E}\left(N_{A}, N_{B}\right)-\mathscr{E}\left(N_{A}+2, N_{B}-2\right) .
$$

Use this and the result of part (A) to calculate the probability that at some stage of the tally candidate B is ahead (by at least one vote) in the count.
(E) Generalization: Assume as in the original problem that candidate A receives N_{A} votes and candidate B receives $N_{B}=N-N_{A}$ votes, and assume that $N_{B} \geq k$ for some $k \geq 1$. What is the probability that at any stage of the tally candidate B is ahead in the vote count by at least k votes?

Problem 4. Ballot Problem and Random Walk. Let S_{n} be a $p-q$ random walk starting at $S_{0}=0$, that is, the steps $X_{j}=S_{j}-S_{j-1}$ are independent, identically distributed with distribution

$$
\begin{aligned}
& P_{p}\left\{X_{j}=+1\right\}=p, \\
& P_{p}\left\{X_{j}=-1\right\}=q,
\end{aligned}
$$

where $p+q=1$.
(A) Show that conditional on the event $S_{N}=2 m$, all possible orderings of the steps $X_{1}, X_{2}, \ldots X_{N}$ are equally likely, that is, their conditional distribution is the same as in sampling without replacement from an urn with $N+m$ ballots marked +1 and $N-m$ ballots marked -1 .
(B) Use the result of the ballot problem above to give a formula for the first-passage probability

$$
P_{p}\{T=2 N+1\}
$$

where T is the first time (if ever) that the random walk S_{n} reaches +1 , that is,

$$
T=\min \left\{n: S_{n}=+1\right\} .
$$

