
CONTINUOUS-TIME MARKOV CHAINS

1. DEFINITION AND FIRST PROPERTIES

Definition 1. A continuous-time Markov chain on a finite or countable state spaceX is a family
ofX�valued random variables Xt = X (t ) indexed by t 2R+ such that:

(A) The sample paths t 7! Xt are right-continuous X�valued step functions with only
finitely many discontinuities (jumps) in any finite time interval; and

(B) The process Xt satisfies the Markov property, that is, for any choice of states x0, x1, . . . , xn+1
and times t0 < t1 < · · ·< tn < tn+1,

(1) P (X (tn+1) = xn+1 |X (ti ) = xi 8 i  n ) = ptn+1�tn
(xn , xn+1).

Property (B) holds, in particular, for times t j in an arithmetic progression �Z+, and so for
each � > 0 the discrete-time sequence X (n�) is a discrete-time Markov chain with one-step
transition probabilities p�(x , y ). It is natural to wonder if every discrete-time Markov chain
can be embedded in a continuous-time Markov chain; the answer is no, for reasons that will
become clear in the discussion of the Kolmogorov differential equations below.

The probabilities ps (x , y ) are called the transition probabilities for the Markov chain, and
for the same reason as in the discrete-time case it is often advantageous to view them as being
arranged in matrices

(2) Ps = (ps (x , y ))x ,y 2X .

For each s � 0 the transition probability matrix Ps is stochastic. The one-parameter family
{Ps }s�0 is called the transition semigroup, because the matrices obey a multiplication law: for
any s , t > 0

(3) Pt+s = PtPs .

(These are the natural analogues of the Chapman-Kolmogorov equations for discrete-time chains.)
As for discrete-time Markov chains, we denote the initial state x (or initial probability distribu-
tion ⌫ onX ) by a superscript P x or P ⌫. With this notation, the Markov property can be written
in the following equivalent form:

(4) P x {X (t j ) = x j 81 j  n}=
nY

j=1

pt j�t j�1
(x j�1, x j )

with the convention that x = x0 and t0 = 0.

Proposition 1. The transition semigroup is continuous (in t ), that is,

(5) lim
s!0
Ps = I
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Proof. This is an easy consequence of the right-continuity of sample paths: With P x�probability
one, Xt = x for all t near 0, and so Xt ! x in P x�probability as t ! 0. Therefore, the transition
probabilities satisfy

lim
t!0

pt (x , x ) = 1 and

lim
t!0

pt (x , y ) = 0 for all y 6= x .

⇤

Together with the semigroup property (3), Proposition 1 implies that Pt+s ! Pt as s ! 0 for
every t � 0. This is the principal reason for the restriction (A) in Definition 1. In fact there are
discontinuous semigroups of transition probability matrices: For example, withX = {1, 2},

(6) P0 = I and Pt =
Å

.5 .5

.5 .5

ã

It is generally impossible to build processes Xt that satisfy the Markov property (B) whose tran-
sition probabilities come from such discontinuous semigroups that are not themselves discon-
tinuous everywhere.

Example 1. A constant-rate Poisson counting process is a continuous-time Markov chain on
Z+ with transition probabilities

pt (x , y ) = (�t )y�x (�t )y�x e ��t

(y � x )!
for x  y .

Example 2. Let Nt be a standard unit-intensity Poisson counting process, and let ⇠1,⇠2, . . . be
independent, identically distributed random variables from a probability distribution {pk }k2Z
on the integers. Assume that the Poisson process Nt is independent of the random variables
⇠i . Define

(7) Xt :=
NtX

j=1

⇠ j .

The process Xt is a continuous-time Markov chain on the integers. Such processes are generi-
cally called compound Poisson processes. In the special case where p1 = p�1 = 1/2, the process
Xt is called the continuous-time simple random walk on the integers.

Example 3. A pure birth process with birth rates �x > 0 is a continuous-time Markov chain Xt

on the nonnegative integers built from i.i.d. unit exponential random variables ⇠i as follows:
For some initial state x � 0, define

(8) Xt = X x
t =max{y � x :

yX

j=x+1

��1
j ⇠ j < t }.

We will see later that if
P1

j=1�
�1
j =1 then the process Xt is well-defined and satisfies the

Markov property. Note that the Poisson process with rate� is a pure birth process (with� j =�).
Another example is the Yule process, for which � j = j .
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2. JUMP TIMES AND THE EMBEDDED JUMP CHAIN

Because the paths of a continuous-time Markov chain are step functions, with only finitely
many jumps in any finite time interval, the jumps occur at a discrete set of time points 0< T =
T1 < T2 < . . . . Assume, to avoid trivialities, that there are no absorbing states (that is, states x
such that pt (x , x ) = 1 for all t � 0).

Theorem 2. For every state x there is a positive parameter �x > 0 such that under P x the distri-
bution of T is exponential with mean 1/�x , that is,

(9) P x {T > t }= e ��x t 8 t � 0.

Furthermore, the state X (T ) of the Markov chain at the first jump time T is independent of T ,
and has distribution

(10) P x {X (T ) = y }= lim
n!1

p2�n (x , y )
1�p2�n (x , x )

for all y 6= x .

The strategy of the proof will be to use the right-continuity of the sample paths to reduce the
problem to proving a similar statement about discrete-time Markov chains.

Lemma 3. Let {Xn}n�0 be a discrete-time Markov chain on a finite or countable setX , with one-
step transition probabilities p (x , y ). Define ⌧ to be the first time n � 1 such that Xn 6= X0 (that is,
the time of the first jump). Then for any initial state x , under P x ,

(A) the distribution of ⌧ is geometric with parameter 1�p (x , x ); and
(B) the random variable X⌧ is independent of ⌧, and has distribution

P x {X⌧ = y }= p (x , y )/(1�p (x , x )) for y 6= x ;

P x {X⌧ = x }= 0.

Proof of the Lemma. Let’s first show that ⌧ has a geometric distribution. For this, observe that
if X0 = x then the event {⌧ > n} coincides with the event {Xi = x for all i = 0, 1, 2, . . . , n};
consequently,

P x {⌧> n}= P x {Xi = x for all i  n}= p (x , x )n =)
P x {⌧= n +1}= p n (x , x )(1�p (x , x )).

This shows that the distribution is geometric with parameter 1�p (x , x ).
Now consider the joint distribution of ⌧ and X⌧. By the same reasoning as above, for any

y 6= x

P x {⌧= n +1 and X⌧ = y }= P x {X j = x for all j  n and Xn+1 = y }
= p (x , x )n p (x , y )

= P x {⌧= n +1} p (x , y )
1�p (x , x )

.

This shows that X⌧ is independent of ⌧ and that X⌧ has distribution

P x {X⌧ = y }= p (x , y )
1�p (x , x )

for y 6= x .

⇤
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Proof. The key is that for each n = 1, 2, . . . the discrete-time process (X (k/2n ))k=0,1,2,... is a discrete-
time Markov chain; thus, Lemma 3 applies for each of these. In particular, if X (0) = x is the
initial state and ⌧n is the time k of the first jump for the nth process (X (k/2n ))k=0,1,2,... then ⌧n

has the geometric distribution with parameter 1�p2�n (x , x ).
Now consider the event {T � t }. Because the sample paths of the process are step functions,

the event {T � t } is the intersection of the events {⌧n � [2n t ]}, where [s ] denotes the greatest
integer in s . By Lemma 3,

P x {⌧n � [2n t ]}= p2�n (x , x )[2
n t ] = exp{[2n t ] log p2�n (x , x )}.

Since limn!1P x {⌧n � [2n t ]} = P x {T � t }, and since P x {T � t } is not zero for all t > 0 (be-
cause this would force T = 0 with probability 1) it follows that

(11) �x := lim
n!1�2n log p2�n (x , x )

exists and is nonnegative, and that equation (9) holds. Moreover, the parameter �x must be
strictly positive, because otherwise P x {T � t }= 1 for all t , and x would be an absorbing state,
contrary to our assumptions. Thus, the first jump time T has the exponential distribution with
parameter (11).

A similar argument shows that the random variable X (T ) is independent of T . Because the
paths of the process X (t ) are right-continuous step functions, X (T ) = X (⌧n/2n ) for all suffi-
ciently large n . But for each n = 1, 2, . . . the random variable X (⌧n/2n ) is independent of ⌧n ,
by Lemma 3, and hence independent of the event {⌧n � [2n t ]}. Since the event {T ‘ > t } is the
intersection of events {⌧n � [2n t ]}, we have

P x {X (T ) = y and T � t }= lim
n!1P x {X (⌧n/2

n ) = y and⌧n � [2n t ]}
= lim

n!1P x {X (⌧n/2
n ) = y }P x {⌧n � [2n t ]}

lim
n!1P x {X (⌧n/2

n ) = y } lim
n!1P x {⌧n � [2n t ]}

= P x {X (T ) = y }P x {T � t }.
This proves that the random variables X (T ) and T are independent. Finally, since X (T ) =
X (⌧n/2n ) for all sufficiently large n , it follows by Lemma 3 that for any y 6= x ,

P x {X (T ) = y }= lim
n!1P x {X (⌧n/2

n ) = y }= lim
n!1

p2�n (x , y )
1�p2�n (x , x )

.

⇤

Theorem 4. Let X (t ) be a continuous-time Markov chain that starts in state X (0) = x . Then
conditional on T and X (T ) = y , the post-jump process

(12) X ⇤(s ) := X (T + s )

is itself a continuous-time Markov chain with the transition probabilities Ps and initial state
y . More precisely, there exists a stochastic matrix A = (ax ,y ) such that for all times s � 0 and
0= t0 < t1 < t2 < . . . , and all states x , y = y0, y1, . . . ,

(13) P x {T > s and X ⇤(ti ) = yi 8 0 i  n}= e ��x s ax ,y

nY

i=1

pti�ti�1
(yi�1, yi ).
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The proof is similar to that of Theorem 2 and therefore is omitted. Theorem 4 provides a
recursive description of a continuous-time Markov chain: Start at x , wait an exponential-�x

random time, choose a new state y according to the distribution {ax ,y }y 2X , and then begin
again at y . The only information from the past that is retained in this recursion is the state y .
Thus, an easy induction argument (on n) proves the following:

Corollary 5. The embedded jump chain Yn := X (Tn ) is itself a discrete-time Markov chain with
transition probability matrix A.

3. KOLMOGOROV BACKWARD AND FORWARD EQUATIONS

3.1. Kolmogorov Equations.

Definition 2. The infinitesimal generator (also called theQ�matrix) of a continuous-time Markov
chain is the matrixQ= (qx ,y )x ,y 2X with entries

(14) qx ,y =�x ax ,y

where�x is the parameter of the holding distribution for state x (Theorem 2) andA= (ax ,y )x ,y 2X
is the transition probability matrix of the embedded jump chain (Theorem 4).

Theorem 6. The transition probabilities pt (x , y ) of a finite-state continuous-time Markov chain
satisfy the following differential equations, called the Kolmogorov equations (also called the
backward and forward equations, respectively):

d

d t
pt (x , y ) =
X

z2X
q (x , z )pt (z , y ) (BW)(15)

d

d t
pt (x , y ) =
X

z2X
pt (x , z )q (z , y ) (FW).(16)

The transition probabilities of an infinite-state continuous-time Markov chain satisfy the back-
ward equations, but not always the forward equations.

Note: In matrix form the Kolmogorov equations read

d

d t
Pt =QPt (BW)(17)

d

d t
Pt = PtQ (FW).(18)

Proof. I will prove this only for finite state spaces X . To prove the backward equations for
infinite-state Markov chains, it is necessary to deal with the technical problem of interchanging
a limit and an infinite series – but the basic idea is the same as in the finite state space case.
However, for infinite state Markov chains, the validity of the forward equations is a very sticky
problem – see K. L. Chung’s book Markov Chains with Stationary Transition Probabilities for
the whole story.

The Chapman-Kolmogorov equations (3) imply that for any t ," > 0,

"�1(pt+"(x , y )�pt (x , y )) =
X

z2X
"�1(p"(x , z )��(x , x ))pt (z , y ) (BW)(19)

=
X

z2X
"�1pt (x , z )(p"(z , y )��(z , z )) (FW)(20)
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where �(x , y ) is the Kronecker � (that is, �(x , y ) = 1 if x = y and = 0 if x 6= y ). Since the sum
(19) has only finitely many terms, to prove the backward equation (15) it suffices to prove that

(21) lim
"!0
"�1(p"(x , z )��(x , x )) = qx ,z =�x ax ,z .

Consider how the Markov chain might find its way from state x at time 0 to state z 6= x at time
" when " > 0 is small: Either there is just one jump, from x to z , or there are two or more jumps
before time ". By Theorem 2,

P x {T1  "}= 1� e ��x " =�x "+O ("2).

Consequently, the chance that there are two or more jumps before time " is of order O ("2), and
this is not enough to affect the limit (21). Thus, when " > 0 is small,

"�1p"(x , z )⇡�x ax ,z for x 6= z , and(22)

"�1(p"(x , x )�1)⇡��x .

Since qx ,z = �x ax ,z for z 6= x and qx ,x = ��x , this proves the backward equations (15) in the
case where the state spaceX is finite. A similar argument, this time starting from the equation
(20),proves the forward equations. ⇤

3.2. Stationary Distributions.

Definition 3. A probability distribution⇡= {⇡x }x2X on the state spaceX is called a stationary
distribution for the Markov chain if for every t > 0,

(23) ⇡T Pt =⇡T

A continuous-time Markov chain is said to be irreducible if any two states communicate. It
is not difficult to show (exercise!) that a continuous-time Markov chain Xt is irreducible if and
only if for each � > 0 the discrete-time Markov chain Xn� is irreducible. Nor is it difficult to
show that for every�> 0 discrete-time Markov chain Xn� is aperiodic (use Theorem 2).

Corollary 7. If an irreducible continuous-time Markov chain has a stationary distribution ⇡x

then it is unique, and for each pair of states x , y ,

(24) lim
t!1

pt (x , y ) =⇡y

Proof. For any�> 0 the discrete-time chain X (n�) is aperiodic and irreducible, so Kolmogorov’s
theorem for discrete-time chains implies uniqueness of the stationary distribution, and the
convergence

lim
n!1pn�(x , y ) =⇡y

Continuity of the semigroup Pt (Proposition 1) therefore implies (24). ⇤

In practice, it is often difficult to calculate stationary distributions by directly solving the
equations (23), in part because it isn’t always possible to solve the Kolmogorov equations (15)–
(16) in a useful closed form. Nevertheless, the Kolmogorov equations lead to another character-
ization of stationary distributions that often leads to explicit formulas even when the equations
(15)–(16) cannot be solved:

Corollary 8. A probability distribution ⇡ is stationary if and only if

(25) ⇡TQ= 0T .
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Proof. Suppose first that ⇡T is stationary. Take the derivative of each side of (23) at t = 0 to
obtain (25). Now suppose, conversely, that ⇡ satisfies (25). Multiply both sides by Pt to obtain

⇡TQPt = 0T 8 t � 0.

By the Kolmogorov backward equations, this implies that

d

d t
⇡T Pt = 0T 8 t � 0;

but this means that ⇡T Pt is constant in time t . Since limt!0Pt = I , equation (23) follows. ⇤

3.3. Matrix Exponentials and the Kolmogorov Equations.

Definition 4. If A is a square matrix then its exponential is defined by

(26) e A := exp{A} :=
1X

n=0

An

n !

The infinite sum converges, because the matrix norms of the partial sums are bounded, by
the triangle inequality and the fact that the power series for the scalar exponential function
converges: ����

m+kX

n=m+1

An

n !

����
m+kX

n=m+1

kAkn
n !

1X

n=m+1

kAkn
n !
�! 0

as m!1.

Special Case: Diagonal Matrices. Suppose that A is a diagonal matrix, with diagonal entries
�i . Then

exp{A}=

0
B@

e �i 0 0 · · · 0
0 e �2 0 · · · 0
· · ·
0 0 0 · · · e �m .

1
CA

Special Case: A =U DU �1. Suppose that A is similar to D , that is, A =U DU �1 for some invert-
ible matrix U . Then

exp{A}= exp{U DU �1}=U exp{D }U �1.

Consequently, if A can be diagonalized then its exponential e A can be computed by exponen-
tiating the eigenvalues �i .

Proposition 9. If A and B are square m ⇥m matrices such that AB = B A then

(27) exp{A+B }= exp{A}exp{B }.
Consequently, for any m ⇥m square matrix A with real entries and all s , t 2R,

(28) exp{(s + t )A}= exp{s A}exp{t A},
and so the mapping t 7! e At is a group homomorphism from the additive group (R,+) into the
multiplicative group G Lm (R) of invertible m ⇥m matrices with real entries.

CAUTION: The multiplication law (27) is not generally true if A and B do not commute.
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Proof. This should remind you of the calculations we did in proving some of the fundamental
connections between the binomial and Poisson distributions (in particular, the superposition
and thinning theorems):

exp{A+B }=
1X

n=0

(A+B )n

n !

=
1X

n=0

nX

k=0

✓
n

k

◆
Ak B n�k

n !

=
1X

n=0

nX

k=0

Ak B n�k

k !(n �k )!

=
1X

k=0

1X

m=0

Ak B m

k !m !

=
1X

k=0

Ak

k !

1X

m=0

B m

m !

= exp{A}exp{B }.
This proves (27); the relation (28) follows immediately. ⇤
Corollary 10. For any square matrix A,

(29)
d

d t
exp{t A}= A exp{t A}= exp{t A}A.

Proof. Relation (28) implies that

exp{(t + s )A}�exp{t A}
s

= exp{t A}exp{s A}� I

s
=

exp{s A}� I

s
exp{t A}

But as s ! 0,
exp{s A}� I

s
=
1X

n=1

s n An

s n !
�! A.

(Why?) ⇤
Corollary 11. The (unique) solution to the Kolmogorov backward equations (17) is

(30) Pt = exp{tQ}.

Proof. The matrix function on the right side satisfies the same first-order differential equations,
and the same initial condition. ⇤


